mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
385 lines
13 KiB
C++
385 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2010 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
quasi_macros.cpp
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Christoph Wintersteiger (t-cwinte) 2010-04-23
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include "ast/macros/quasi_macros.h"
|
|
#include "ast/for_each_expr.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "util/uint_set.h"
|
|
#include "ast/rewriter/var_subst.h"
|
|
|
|
quasi_macros::quasi_macros(ast_manager & m, macro_manager & mm) :
|
|
m(m),
|
|
m_macro_manager(mm),
|
|
m_rewriter(m),
|
|
m_new_vars(m),
|
|
m_new_eqs(m),
|
|
m_new_qsorts(m) {
|
|
}
|
|
|
|
quasi_macros::~quasi_macros() {
|
|
}
|
|
|
|
void quasi_macros::find_occurrences(expr * e) {
|
|
unsigned j;
|
|
m_todo.reset();
|
|
m_todo.push_back(e);
|
|
|
|
// we remember whether we have seen an expr once, or more than once;
|
|
// when we see it the second time, we don't have to visit it another time,
|
|
// as we are only interested in finding unique function applications.
|
|
m_visited_once.reset();
|
|
m_visited_more.reset();
|
|
|
|
while (!m_todo.empty()) {
|
|
expr * cur = m_todo.back();
|
|
m_todo.pop_back();
|
|
|
|
if (m_visited_more.is_marked(cur))
|
|
continue;
|
|
|
|
if (m_visited_once.is_marked(cur))
|
|
m_visited_more.mark(cur, true);
|
|
|
|
m_visited_once.mark(cur, true);
|
|
|
|
switch (cur->get_kind()) {
|
|
case AST_VAR: break;
|
|
case AST_QUANTIFIER: m_todo.push_back(to_quantifier(cur)->get_expr()); break;
|
|
case AST_APP:
|
|
if (is_non_ground_uninterp(cur)) {
|
|
func_decl * f = to_app(cur)->get_decl();
|
|
m_occurrences.insert_if_not_there(f, 0);
|
|
occurrences_map::iterator it = m_occurrences.find_iterator(f);
|
|
it->m_value++;
|
|
}
|
|
j = to_app(cur)->get_num_args();
|
|
while (j)
|
|
m_todo.push_back(to_app(cur)->get_arg(--j));
|
|
break;
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
};
|
|
|
|
bool quasi_macros::is_non_ground_uninterp(expr const * e) const {
|
|
return is_non_ground(e) && is_uninterp(e);
|
|
}
|
|
|
|
bool quasi_macros::is_unique(func_decl * f) const {
|
|
return m_occurrences.find(f) == 1;
|
|
}
|
|
|
|
struct var_dep_proc {
|
|
bit_vector m_bitset;
|
|
public:
|
|
var_dep_proc(quantifier * q) { m_bitset.resize(q->get_num_decls(), false); }
|
|
void operator()(var * n) { m_bitset.set(n->get_idx(), true); }
|
|
void operator()(quantifier * n) {}
|
|
void operator()(app * n) {}
|
|
bool all_used() {
|
|
for (unsigned i = 0; i < m_bitset.size() ; i++)
|
|
if (!m_bitset.get(i))
|
|
return false;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
bool quasi_macros::fully_depends_on(app * a, quantifier * q) const {
|
|
// CMW: This checks whether all variables in q are used _somewhere_ deep down in the children of a
|
|
|
|
/* var_dep_proc proc(q);
|
|
for_each_expr(proc, a);
|
|
return proc.all_used(); */
|
|
|
|
// CMW: This code instead checks that all variables appear at least once as a
|
|
// direct argument of a, i.e., a->get_arg(i) == v for some i
|
|
bit_vector bitset;
|
|
bitset.resize(q->get_num_decls(), false);
|
|
for (unsigned i = 0 ; i < a->get_num_args() ; i++) {
|
|
if (is_var(a->get_arg(i)))
|
|
bitset.set(to_var(a->get_arg(i))->get_idx(), true);
|
|
}
|
|
|
|
for (unsigned i = 0; i < bitset.size() ; i++) {
|
|
if (!bitset.get(i))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool quasi_macros::depends_on(expr * e, func_decl * f) const {
|
|
ptr_vector<expr> todo;
|
|
expr_mark visited;
|
|
todo.push_back(e);
|
|
while(!todo.empty()) {
|
|
expr * cur = todo.back();
|
|
todo.pop_back();
|
|
|
|
if (visited.is_marked(cur))
|
|
continue;
|
|
|
|
if (is_app(cur)) {
|
|
app * a = to_app(cur);
|
|
if (a->get_decl() == f)
|
|
return true;
|
|
|
|
unsigned j = a->get_num_args();
|
|
while (j>0)
|
|
todo.push_back(a->get_arg(--j));
|
|
}
|
|
|
|
visited.mark(cur, true);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool quasi_macros::is_quasi_macro(expr * e, app_ref & a, expr_ref & t) const {
|
|
// Our definition of a quasi-macro:
|
|
// Forall X. f[X] = T[X], where f[X] is a term starting with symbol f, f is uninterpreted,
|
|
// f[X] contains all universally quantified variables, and f does not occur in T[X].
|
|
TRACE("quasi_macros", tout << "Checking for quasi macro: " << mk_pp(e, m) << std::endl;);
|
|
|
|
if (is_forall(e)) {
|
|
quantifier * q = to_quantifier(e);
|
|
expr * qe = q->get_expr(), *lhs = nullptr, *rhs = nullptr;
|
|
if ((m.is_eq(qe, lhs, rhs))) {
|
|
|
|
if (is_non_ground_uninterp(lhs) && is_unique(to_app(lhs)->get_decl()) &&
|
|
!depends_on(rhs, to_app(lhs)->get_decl()) && fully_depends_on(to_app(lhs), q)) {
|
|
a = to_app(lhs);
|
|
t = rhs;
|
|
return true;
|
|
} else if (is_non_ground_uninterp(rhs) && is_unique(to_app(rhs)->get_decl()) &&
|
|
!depends_on(lhs, to_app(rhs)->get_decl()) && fully_depends_on(to_app(rhs), q)) {
|
|
a = to_app(rhs);
|
|
t = lhs;
|
|
return true;
|
|
}
|
|
} else if (m.is_not(qe, lhs) && is_non_ground_uninterp(lhs) &&
|
|
is_unique(to_app(lhs)->get_decl())) { // this is like f(...) = false
|
|
a = to_app(lhs);
|
|
t = m.mk_false();
|
|
return true;
|
|
} else if (is_non_ground_uninterp(qe) && is_unique(to_app(qe)->get_decl())) { // this is like f(...) = true
|
|
a = to_app(qe);
|
|
t = m.mk_true();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool quasi_macros::quasi_macro_to_macro(quantifier * q, app * a, expr * t, quantifier_ref & macro) {
|
|
m_new_var_names.reset();
|
|
m_new_vars.reset();
|
|
m_new_qsorts.reset();
|
|
m_new_eqs.reset();
|
|
|
|
func_decl * f = a->get_decl();
|
|
|
|
// CMW: we rely on the fact that all variables in q appear at least once as
|
|
// a direct argument of `a'.
|
|
|
|
bit_vector v_seen;
|
|
v_seen.resize(q->get_num_decls(), false);
|
|
for (unsigned i = 0; i < a->get_num_args(); ++i) {
|
|
expr* arg = a->get_arg(i);
|
|
if (!is_var(arg) && !is_ground(arg))
|
|
return false;
|
|
if (!is_var(arg) || v_seen.get(to_var(arg)->get_idx())) {
|
|
unsigned inx = m_new_var_names.size();
|
|
m_new_name.str("");
|
|
m_new_name << 'X' << inx;
|
|
m_new_var_names.push_back(symbol(m_new_name.str()));
|
|
m_new_qsorts.push_back(f->get_domain()[i]);
|
|
|
|
m_new_vars.push_back(m.mk_var(inx + q->get_num_decls(), f->get_domain()[i]));
|
|
m_new_eqs.push_back(m.mk_eq(m_new_vars.back(), a->get_arg(i)));
|
|
} else {
|
|
var * v = to_var(arg);
|
|
m_new_vars.push_back(v);
|
|
v_seen.set(v->get_idx(), true);
|
|
}
|
|
}
|
|
|
|
// Reverse the new variable names and sorts. [CMW: There is a smarter way to do this.]
|
|
vector<symbol> new_var_names_rev;
|
|
sort_ref_vector new_qsorts_rev(m);
|
|
unsigned i = m_new_var_names.size();
|
|
while (i > 0) {
|
|
i--;
|
|
new_var_names_rev.push_back(m_new_var_names.get(i));
|
|
new_qsorts_rev.push_back(m_new_qsorts.get(i));
|
|
}
|
|
|
|
// We want to keep all the old variables [already reversed]
|
|
for (unsigned i = 0 ; i < q->get_num_decls() ; i++) {
|
|
new_var_names_rev.push_back(q->get_decl_name(i));
|
|
new_qsorts_rev.push_back(q->get_decl_sort(i));
|
|
}
|
|
|
|
// Macro := Forall m_new_vars . appl = ITE( m_new_eqs, t, f_else)
|
|
|
|
app_ref appl(m.mk_app(f, m_new_vars.size(), m_new_vars.c_ptr()), m);
|
|
|
|
func_decl * fd = m.mk_fresh_func_decl(f->get_name(), symbol("else"),
|
|
f->get_arity(), f->get_domain(),
|
|
f->get_range());
|
|
expr_ref f_else(m.mk_app(fd, m_new_vars.size(), m_new_vars.c_ptr()), m);
|
|
expr_ref ite(m.mk_ite(m.mk_and(m_new_eqs.size(), m_new_eqs.c_ptr()), t, f_else), m);
|
|
|
|
expr_ref eq(m.mk_eq(appl, ite), m);
|
|
|
|
macro = m.mk_quantifier(forall_k, new_var_names_rev.size(),
|
|
new_qsorts_rev.c_ptr(), new_var_names_rev.c_ptr(), eq);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool quasi_macros::find_macros(unsigned n, expr * const * exprs) {
|
|
TRACE("quasi_macros", tout << "Finding quasi-macros in: " << std::endl;
|
|
for (unsigned i = 0 ; i < n ; i++)
|
|
tout << i << ": " << mk_pp(exprs[i], m) << std::endl; );
|
|
bool res = false;
|
|
m_occurrences.reset();
|
|
|
|
|
|
// Find out how many non-ground appearances for each uninterpreted function there are
|
|
for (unsigned i = 0 ; i < n ; i++)
|
|
find_occurrences(exprs[i]);
|
|
|
|
TRACE("quasi_macros",
|
|
tout << "Occurrences: " << std::endl;
|
|
for (auto & kd : m_occurrences)
|
|
tout << kd.m_key->get_name() << ": " << kd.m_value << std::endl; );
|
|
|
|
// Find all macros
|
|
for (unsigned i = 0 ; i < n ; i++) {
|
|
app_ref a(m);
|
|
expr_ref t(m);
|
|
quantifier_ref macro(m);
|
|
if (is_quasi_macro(exprs[i], a, t) &&
|
|
quasi_macro_to_macro(to_quantifier(exprs[i]), a, t, macro)) {
|
|
TRACE("quasi_macros", tout << "Found quasi macro: " << mk_pp(exprs[i], m) << std::endl;
|
|
tout << "Macro: " << mk_pp(macro, m) << std::endl; );
|
|
proof * pr = nullptr;
|
|
if (m.proofs_enabled())
|
|
pr = m.mk_def_axiom(macro);
|
|
expr_dependency * dep = nullptr;
|
|
if (m_macro_manager.insert(a->get_decl(), macro, pr, dep))
|
|
res = true;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
bool quasi_macros::find_macros(unsigned n, justified_expr const * exprs) {
|
|
TRACE("quasi_macros", tout << "Finding quasi-macros in: " << std::endl;
|
|
for (unsigned i = 0 ; i < n ; i++)
|
|
tout << i << ": " << mk_pp(exprs[i].get_fml(), m) << std::endl; );
|
|
bool res = false;
|
|
m_occurrences.reset();
|
|
|
|
|
|
// Find out how many non-ground appearances for each uninterpreted function there are
|
|
for ( unsigned i = 0 ; i < n ; i++ )
|
|
find_occurrences(exprs[i].get_fml());
|
|
|
|
TRACE("quasi_macros", tout << "Occurrences: " << std::endl;
|
|
for (occurrences_map::iterator it = m_occurrences.begin();
|
|
it != m_occurrences.end();
|
|
it++)
|
|
tout << it->m_key->get_name() << ": " << it->m_value << std::endl; );
|
|
|
|
// Find all macros
|
|
for ( unsigned i = 0 ; i < n ; i++ ) {
|
|
app_ref a(m);
|
|
expr_ref t(m);
|
|
quantifier_ref macro(m);
|
|
if (is_quasi_macro(exprs[i].get_fml(), a, t) &&
|
|
quasi_macro_to_macro(to_quantifier(exprs[i].get_fml()), a, t, macro)) {
|
|
TRACE("quasi_macros", tout << "Found quasi macro: " << mk_pp(exprs[i].get_fml(), m) << std::endl;
|
|
tout << "Macro: " << mk_pp(macro, m) << std::endl; );
|
|
proof * pr = nullptr;
|
|
if (m.proofs_enabled())
|
|
pr = m.mk_def_axiom(macro);
|
|
if (m_macro_manager.insert(a->get_decl(), macro, pr))
|
|
res = true;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void quasi_macros::apply_macros(expr_ref_vector & exprs, proof_ref_vector & prs, expr_dependency_ref_vector& deps) {
|
|
unsigned n = exprs.size();
|
|
for (unsigned i = 0 ; i < n ; i++ ) {
|
|
expr_ref r(m), rr(m);
|
|
proof_ref pr(m), prr(m);
|
|
expr_dependency_ref dep(m);
|
|
proof * p = m.proofs_enabled() ? prs.get(i) : nullptr;
|
|
m_macro_manager.expand_macros(exprs.get(i), p, deps.get(i), r, pr, dep);
|
|
m_rewriter(r, rr, prr);
|
|
if (pr) pr = m.mk_modus_ponens(pr, prr);
|
|
exprs[i] = rr;
|
|
prs[i] = pr;
|
|
deps[i] = dep;
|
|
}
|
|
}
|
|
|
|
bool quasi_macros::operator()(expr_ref_vector & exprs, proof_ref_vector & prs, expr_dependency_ref_vector & deps) {
|
|
unsigned n = exprs.size();
|
|
if (find_macros(n, exprs.c_ptr())) {
|
|
apply_macros(exprs, prs, deps);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void quasi_macros::apply_macros(unsigned n, justified_expr const* fmls, vector<justified_expr>& new_fmls) {
|
|
for (unsigned i = 0 ; i < n ; i++) {
|
|
expr_ref r(m), rr(m);
|
|
proof_ref pr(m), prr(m);
|
|
proof * p = m.proofs_enabled() ? fmls[i].get_proof() : nullptr;
|
|
expr_dependency_ref dep(m);
|
|
m_macro_manager.expand_macros(fmls[i].get_fml(), p, nullptr, r, pr, dep);
|
|
m_rewriter(r, rr, prr);
|
|
if (pr) pr = m.mk_modus_ponens(pr, prr);
|
|
new_fmls.push_back(justified_expr(m, rr, pr));
|
|
}
|
|
}
|
|
|
|
bool quasi_macros::operator()(unsigned n, justified_expr const* fmls, vector<justified_expr>& new_fmls) {
|
|
if (find_macros(n, fmls)) {
|
|
apply_macros(n, fmls, new_fmls);
|
|
return true;
|
|
}
|
|
else {
|
|
// just copy them over
|
|
for (unsigned i = 0 ; i < n ; i++ ) {
|
|
new_fmls.push_back(fmls[i]);
|
|
}
|
|
return false;
|
|
}
|
|
}
|