mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 11:42:28 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			786 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			786 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from z3 import *
 | |
| import heapq
 | |
| import numpy
 | |
| import time
 | |
| import random
 | |
| 
 | |
| verbose = True
 | |
| 
 | |
| # Simplistic (and fragile) converter from
 | |
| # a class of Horn clauses corresponding to
 | |
| # a transition system into a transition system
 | |
| # representation as <init, trans, goal>
 | |
| # It assumes it is given three Horn clauses
 | |
| # of the form:
 | |
| #  init(x) => Invariant(x)
 | |
| #  Invariant(x) and trans(x,x') => Invariant(x')
 | |
| #  Invariant(x) and goal(x) => Goal(x)
 | |
| # where Invariant and Goal are uninterpreted predicates
 | |
| 
 | |
| class Horn2Transitions:
 | |
|     def __init__(self):
 | |
|         self.trans = True
 | |
|         self.init = True
 | |
|         self.inputs = []
 | |
|         self.goal = True
 | |
|         self.index = 0
 | |
| 
 | |
|     def parse(self, file):
 | |
|         fp = Fixedpoint()
 | |
|         goals = fp.parse_file(file)
 | |
|         for r in fp.get_rules():
 | |
|             if not is_quantifier(r):
 | |
|                 continue
 | |
|             b = r.body()
 | |
|             if not is_implies(b):
 | |
|                 continue
 | |
|             f = b.arg(0)
 | |
|             g = b.arg(1)
 | |
|             if self.is_goal(f, g):
 | |
|                 continue
 | |
|             if self.is_transition(f, g):
 | |
|                 continue
 | |
|             if self.is_init(f, g):
 | |
|                 continue
 | |
| 
 | |
|     def is_pred(self, p, name):
 | |
|         return is_app(p) and p.decl().name() == name
 | |
| 
 | |
|     def is_goal(self, body, head):
 | |
|         if not self.is_pred(head, "Goal"):
 | |
|             return False
 | |
|         pred, inv = self.is_body(body)
 | |
|         if pred is None:
 | |
|             return False
 | |
|         self.goal = self.subst_vars("x", inv, pred)
 | |
|         self.goal = self.subst_vars("i", self.goal, self.goal)
 | |
|         self.inputs += self.vars
 | |
|         self.inputs = list(set(self.inputs))
 | |
|         return True
 | |
| 
 | |
|     def is_body(self, body):
 | |
|         if not is_and(body):
 | |
|             return None, None
 | |
|         fmls = [f for f in body.children() if self.is_inv(f) is None]
 | |
|         inv = None
 | |
|         for f in body.children():
 | |
|             if self.is_inv(f) is not None:
 | |
|                 inv = f;
 | |
|                 break
 | |
|         return And(fmls), inv
 | |
| 
 | |
|     def is_inv(self, f):
 | |
|         if self.is_pred(f, "Invariant"):
 | |
|             return f
 | |
|         return None
 | |
| 
 | |
|     def is_transition(self, body, head):
 | |
|         pred, inv0 = self.is_body(body)
 | |
|         if pred is None:
 | |
|             return False
 | |
|         inv1 = self.is_inv(head)
 | |
|         if inv1 is None:
 | |
|             return False
 | |
|         pred = self.subst_vars("x",  inv0, pred)
 | |
|         self.xs = self.vars
 | |
|         pred = self.subst_vars("xn", inv1, pred)
 | |
|         self.xns = self.vars
 | |
|         pred = self.subst_vars("i", pred, pred)
 | |
|         self.inputs += self.vars
 | |
|         self.inputs = list(set(self.inputs))
 | |
|         self.trans = pred
 | |
|         return True
 | |
| 
 | |
|     def is_init(self, body, head):
 | |
|         for f in body.children():
 | |
|             if self.is_inv(f) is not None:
 | |
|                return False
 | |
|         inv = self.is_inv(head)
 | |
|         if inv is None:
 | |
|             return False
 | |
|         self.init = self.subst_vars("x", inv, body)
 | |
|         return True
 | |
| 
 | |
|     def subst_vars(self, prefix, inv, fml):
 | |
|         subst = self.mk_subst(prefix, inv)
 | |
|         self.vars = [ v for (k,v) in subst ]
 | |
|         return substitute(fml, subst)
 | |
| 
 | |
|     def mk_subst(self, prefix, inv):
 | |
|         self.index = 0
 | |
|         if self.is_inv(inv) is not None:
 | |
|             return [(f, self.mk_bool(prefix)) for f in inv.children()]
 | |
|         else:
 | |
|             vars = self.get_vars(inv)
 | |
|             return [(f, self.mk_bool(prefix)) for f in vars]
 | |
| 
 | |
|     def mk_bool(self, prefix):
 | |
|         self.index += 1
 | |
|         return Bool("%s%d" % (prefix, self.index))
 | |
| 
 | |
|     def get_vars(self, f, rs=[]):
 | |
|         if is_var(f):
 | |
|             return z3util.vset(rs + [f], str)
 | |
|         else:
 | |
|             for f_ in f.children():
 | |
|                 rs = self.get_vars(f_, rs)
 | |
|             return z3util.vset(rs, str)
 | |
| 
 | |
| # Produce a finite domain solver.
 | |
| # The theory QF_FD covers bit-vector formulas
 | |
| # and pseudo-Boolean constraints.
 | |
| # By default cardinality and pseudo-Boolean
 | |
| # constraints are converted to clauses. To override
 | |
| # this default for cardinality constraints
 | |
| # we set sat.cardinality.solver to True
 | |
| 
 | |
| def fd_solver():
 | |
|     s = SolverFor("QF_FD")
 | |
|     s.set("sat.cardinality.solver", True)
 | |
|     return s
 | |
| 
 | |
| 
 | |
| # negate, avoid double negation
 | |
| def negate(f):
 | |
|     if is_not(f):
 | |
|         return f.arg(0)
 | |
|     else:
 | |
|         return Not(f)
 | |
| 
 | |
| def cube2clause(cube):
 | |
|     return Or([negate(f) for f in cube])
 | |
| 
 | |
| class State:
 | |
|     def __init__(self, s):
 | |
|         self.R = set([])
 | |
|         self.solver = s
 | |
| 
 | |
|     def add(self, clause):
 | |
|         if clause not in self.R:
 | |
|            self.R |= { clause }
 | |
|            self.solver.add(clause)
 | |
| 
 | |
| def is_seq(f):
 | |
|     return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
 | |
| 
 | |
| # Check if the initial state is bad
 | |
| def check_disjoint(a, b):
 | |
|     s = fd_solver()
 | |
|     s.add(a)
 | |
|     s.add(b)
 | |
|     return unsat == s.check()
 | |
| 
 | |
| 
 | |
| # Remove clauses that are subsumed
 | |
| def prune(R):
 | |
|     removed = set([])
 | |
|     s = fd_solver()
 | |
|     for f1 in R:
 | |
|         s.push()
 | |
|         for f2 in R:
 | |
|             if f2 not in removed:
 | |
|                s.add(Not(f2) if f1.eq(f2) else f2)
 | |
|         if s.check() == unsat:
 | |
|             removed |= { f1 }
 | |
|         s.pop()
 | |
|     return R - removed
 | |
| 
 | |
| # Quip variant of IC3
 | |
| 
 | |
| must = True
 | |
| may = False
 | |
| 
 | |
| class QLemma:
 | |
|     def __init__(self, c):
 | |
|         self.cube = c
 | |
|         self.clause = cube2clause(c)
 | |
|         self.bad = False
 | |
| 
 | |
|     def __hash__(self):
 | |
|         return hash(tuple(set(self.cube)))
 | |
| 
 | |
|     def __eq__(self, qlemma2):
 | |
|         if set(self.cube) == set(qlemma2.cube) and self.bad == qlemma2.bad:
 | |
|             return True
 | |
|         else:
 | |
|             return False
 | |
| 
 | |
|     def __ne__():
 | |
|         if not self.__eq__(self, qlemma2):
 | |
|             return True
 | |
|         else:
 | |
|             return False
 | |
| 
 | |
| 
 | |
| class QGoal:
 | |
|     def __init__(self, cube, parent, level, must, encounter):
 | |
|         self.level = level
 | |
|         self.cube = cube
 | |
|         self.parent = parent
 | |
|         self.must = must
 | |
| 
 | |
|     def __lt__(self, other):
 | |
|         return self.level < other.level
 | |
| 
 | |
| 
 | |
| class QReach:
 | |
| 
 | |
|     # it is assumed that there is a single initial state
 | |
|     # with all latches set to 0 in hardware design, so
 | |
|     # here init will always give a state where all variable are set to 0
 | |
|     def __init__(self, init, xs):
 | |
|         self.xs = xs
 | |
|         self.constant_xs = [Not(x) for x in self.xs]
 | |
|         s = fd_solver()
 | |
|         s.add(init)
 | |
|         is_sat = s.check()
 | |
|         assert is_sat == sat
 | |
|         m = s.model()
 | |
|         # xs is a list, "for" will keep the order when iterating
 | |
|         self.states = numpy.array([[False for x in self.xs]])  # all set to False
 | |
|         assert not numpy.max(self.states)  # since all element is False, so maximum should be False
 | |
| 
 | |
|     # check if new state exists
 | |
|     def is_exist(self, state):
 | |
|         if state in self.states:
 | |
|             return True
 | |
|         return False
 | |
| 
 | |
|     def enumerate(self, i, state_b, state):
 | |
|         while i < len(state) and state[i] not in self.xs:
 | |
|             i += 1
 | |
|         if i >= len(state):
 | |
|             if state_b.tolist() not in self.states.tolist():
 | |
|                 self.states = numpy.append(self.states, [state_b], axis = 0)
 | |
|                 return state_b
 | |
|             else:
 | |
|                 return None
 | |
|         state_b[i] = False
 | |
|         if self.enumerate(i+1, state_b, state) is not None:
 | |
|             return state_b
 | |
|         else:
 | |
|             state_b[i] = True
 | |
|             return self.enumerate(i+1, state_b, state)
 | |
| 
 | |
|     def is_full_state(self, state):
 | |
|         for i in range(len(self.xs)):
 | |
|             if state[i] in self.xs:
 | |
|                 return False
 | |
|         return True
 | |
| 
 | |
|     def add(self, cube):
 | |
|         state = self.cube2partial_state(cube)
 | |
|         assert len(state) == len(self.xs)
 | |
|         if not self.is_exist(state):
 | |
|             return None
 | |
|         if self.is_full_state(state):
 | |
|             self.states = numpy.append(self.states, [state], axis = 0)
 | |
|         else:
 | |
|             # state[i] is instance, state_b[i] is boolean
 | |
|             state_b = numpy.array(state)
 | |
|             for i in range(len(state)):  # state is of same length as self.xs
 | |
|                 # i-th literal in state hasn't been assigned value
 | |
|                 # init un-assigned literals in state_b as True
 | |
|                 # make state_b only contain boolean value
 | |
|                 if state[i] in self.xs:
 | |
|                     state_b[i] = True
 | |
|                 else:
 | |
|                     state_b[i] = is_true(state[i])
 | |
|             if self.enumerate(0, state_b, state) is not None:
 | |
|                 lits_to_remove = set([negate(f) for f in list(set(cube) - set(self.constant_xs))])
 | |
|                 self.constant_xs = list(set(self.constant_xs) - lits_to_remove)
 | |
|                 return state
 | |
|         return None
 | |
| 
 | |
| 
 | |
|     def cube2partial_state(self, cube):
 | |
|         s = fd_solver()
 | |
|         s.add(And(cube))
 | |
|         is_sat = s.check()
 | |
|         assert is_sat == sat
 | |
|         m = s.model()
 | |
|         state = numpy.array([m.eval(x) for x in self.xs])
 | |
|         return state
 | |
| 
 | |
| 
 | |
|     def state2cube(self, s):
 | |
|         result = copy.deepcopy(self.xs)  # x1, x2, ...
 | |
|         for i in range(len(self.xs)):
 | |
|             if not s[i]:
 | |
|                 result[i] = Not(result[i])
 | |
|         return result
 | |
| 
 | |
|     def intersect(self, cube):
 | |
|         state = self.cube2partial_state(cube)
 | |
|         mask = True
 | |
|         for i in range(len(self.xs)):
 | |
|             if is_true(state[i]) or is_false(state[i]):
 | |
|                 mask = (self.states[:, i] == state[i]) & mask
 | |
|         intersects = numpy.reshape(self.states[mask], (-1, len(self.xs)))
 | |
|         if intersects.size > 0:
 | |
|             return And(self.state2cube(intersects[0]))  # only need to return one single intersect
 | |
|         return None
 | |
| 
 | |
| 
 | |
| class Quip:
 | |
| 
 | |
|     def __init__(self, init, trans, goal, x0, inputs, xn):
 | |
|         self.x0 = x0
 | |
|         self.inputs = inputs
 | |
|         self.xn = xn
 | |
|         self.init = init
 | |
|         self.bad = goal
 | |
|         self.trans = trans
 | |
|         self.min_cube_solver = fd_solver()
 | |
|         self.min_cube_solver.add(Not(trans))
 | |
|         self.goals = []
 | |
|         s = State(fd_solver())
 | |
|         s.add(init)
 | |
|         s.solver.add(trans)  # check if a bad state can be reached in one step from current level
 | |
|         self.states = [s]
 | |
|         self.s_bad = fd_solver()
 | |
|         self.s_good = fd_solver()
 | |
|         self.s_bad.add(self.bad)
 | |
|         self.s_good.add(Not(self.bad))
 | |
|         self.reachable = QReach(self.init, x0)
 | |
|         self.frames = []  # frames is a 2d list, each row (representing level) is a set containing several (clause, bad) pairs
 | |
|         self.count_may = 0
 | |
| 
 | |
|     def next(self, f):
 | |
|         if is_seq(f):
 | |
|            return [self.next(f1) for f1 in f]
 | |
|         return substitute(f, zip(self.x0, self.xn))
 | |
| 
 | |
|     def prev(self, f):
 | |
|         if is_seq(f):
 | |
|            return [self.prev(f1) for f1 in f]
 | |
|         return substitute(f, zip(self.xn, self.x0))
 | |
| 
 | |
|     def add_solver(self):
 | |
|         s = fd_solver()
 | |
|         s.add(self.trans)
 | |
|         self.states += [State(s)]
 | |
| 
 | |
|     def R(self, i):
 | |
|         return And(self.states[i].R)
 | |
| 
 | |
|     def value2literal(self, m, x):
 | |
|         value = m.eval(x)
 | |
|         if is_true(value):
 | |
|             return x
 | |
|         if is_false(value):
 | |
|             return Not(x)
 | |
|         return None
 | |
| 
 | |
|     def values2literals(self, m, xs):
 | |
|         p = [self.value2literal(m, x) for x in xs]
 | |
|         return [x for x in p if x is not None]
 | |
| 
 | |
|     def project0(self, m):
 | |
|         return self.values2literals(m, self.x0)
 | |
| 
 | |
|     def projectI(self, m):
 | |
|         return self.values2literals(m, self.inputs)
 | |
| 
 | |
|     def projectN(self, m):
 | |
|         return self.values2literals(m, self.xn)
 | |
| 
 | |
| 
 | |
|     # Block a cube by asserting the clause corresponding to its negation
 | |
|     def block_cube(self, i, cube):
 | |
|         self.assert_clause(i, cube2clause(cube))
 | |
| 
 | |
|     # Add a clause to levels 1 until i
 | |
|     def assert_clause(self, i, clause):
 | |
|         for j in range(1, i + 1):
 | |
|             self.states[j].add(clause)
 | |
|             assert str(self.states[j].solver) != str([False])
 | |
| 
 | |
| 
 | |
|     # minimize cube that is core of Dual solver.
 | |
|     # this assumes that props & cube => Trans
 | |
|     # which means props & cube can only give us a Tr in Trans,
 | |
|     # and it will never make !Trans sat
 | |
|     def minimize_cube(self, cube, inputs, lits):
 | |
|         # min_cube_solver has !Trans (min_cube.solver.add(!Trans))
 | |
|         is_sat = self.min_cube_solver.check(lits + [c for c in cube] + [i for i in inputs])
 | |
|         assert is_sat == unsat
 | |
|         # unsat_core gives us some lits which make Tr sat,
 | |
|         # so that we can ignore other lits and include more states
 | |
|         core = self.min_cube_solver.unsat_core()
 | |
|         assert core
 | |
|         return [c for c in core if c in set(cube)]
 | |
| 
 | |
|     # push a goal on a heap
 | |
|     def push_heap(self, goal):
 | |
|         heapq.heappush(self.goals, (goal.level, goal))
 | |
| 
 | |
| 
 | |
|     # make sure cube to be blocked excludes all reachable states
 | |
|     def check_reachable(self, cube):
 | |
|         s = fd_solver()
 | |
|         for state in self.reachable.states:
 | |
|             s.push()
 | |
|             r = self.reachable.state2cube(state)
 | |
|             s.add(And(self.prev(r)))
 | |
|             s.add(self.prev(cube))
 | |
|             is_sat = s.check()
 | |
|             s.pop()
 | |
|             if is_sat == sat:
 | |
|                 # if sat, it means the cube to be blocked contains reachable states
 | |
|                 # so it is an invalid cube
 | |
|                 return False
 | |
|         # if all fail, is_sat will be unsat
 | |
|         return True
 | |
| 
 | |
|     # Rudimentary generalization:
 | |
|     # If the cube is already unsat with respect to transition relation
 | |
|     # extract a core (not necessarily minimal)
 | |
|     # otherwise, just return the cube.
 | |
|     def generalize(self, cube, f):
 | |
|         s = self.states[f - 1].solver
 | |
|         if unsat == s.check(cube):
 | |
|             core = s.unsat_core()
 | |
|             if self.check_reachable(core):
 | |
|                 return core, f
 | |
|         return cube, f
 | |
| 
 | |
| 
 | |
|     def valid_reachable(self, level):
 | |
|         s = fd_solver()
 | |
|         s.add(self.init)
 | |
|         for i in range(level):
 | |
|             s.add(self.trans)
 | |
|         for state in self.reachable.states:
 | |
|             s.push()
 | |
|             s.add(And(self.next(self.reachable.state2cube(state))))
 | |
|             print self.reachable.state2cube(state)
 | |
|             print s.check()
 | |
|             s.pop()
 | |
| 
 | |
|     def lemmas(self, level):
 | |
|         return [(l.clause, l.bad) for l in self.frames[level]]
 | |
| 
 | |
|     # whenever a new reachable state is found, we use it to mark some existing lemmas as bad lemmas
 | |
|     def mark_bad_lemmas(self, new):
 | |
|         s = fd_solver()
 | |
|         reset = False
 | |
|         for frame in self.frames:
 | |
|             for lemma in frame:
 | |
|                 s.push()
 | |
|                 s.add(lemma.clause)
 | |
|                 is_sat = s.check(new)
 | |
|                 if is_sat == unsat:
 | |
|                     reset = True
 | |
|                     lemma.bad = True
 | |
|                 s.pop()
 | |
|         if reset:
 | |
|             self.states = [self.states[0]]
 | |
|             for i in range(1, len(self.frames)):
 | |
|                 self.add_solver()
 | |
|                 for lemma in self.frames[i]:
 | |
|                     if not lemma.bad:
 | |
|                         self.states[i].add(lemma.clause)
 | |
| 
 | |
|     # prev & tras -> r', such that r' intersects with cube
 | |
|     def add_reachable(self, prev, cube):
 | |
|         s = fd_solver()
 | |
|         s.add(self.trans)
 | |
|         s.add(prev)
 | |
|         s.add(self.next(And(cube)))
 | |
|         is_sat = s.check()
 | |
|         assert is_sat == sat
 | |
|         m = s.model()
 | |
|         new = self.projectN(m)
 | |
|         state = self.reachable.add(self.prev(new))  # always add as non-primed
 | |
|         if state is not None:  # if self.states do not have new state yet
 | |
|             self.mark_bad_lemmas(self.prev(new))
 | |
| 
 | |
| 
 | |
|     # Check if the negation of cube is inductive at level f
 | |
|     def is_inductive(self, f, cube):
 | |
|         s = self.states[f - 1].solver
 | |
|         s.push()
 | |
|         s.add(self.prev(Not(And(cube))))
 | |
|         is_sat = s.check(cube)
 | |
|         if is_sat == sat:
 | |
|             m = s.model()
 | |
|         s.pop()
 | |
|         if is_sat == sat:
 | |
|             cube = self.next(self.minimize_cube(self.project0(m), self.projectI(m), self.projectN(m)))
 | |
|         elif is_sat == unsat:
 | |
|             cube, f = self.generalize(cube, f)
 | |
|             cube = self.next(cube)
 | |
|         return cube, f, is_sat
 | |
| 
 | |
| 
 | |
|     # Determine if there is a cube for the current state
 | |
|     # that is potentially reachable.
 | |
|     def unfold(self, level):
 | |
|         core = []
 | |
|         self.s_bad.push()
 | |
|         R = self.R(level)
 | |
|         self.s_bad.add(R)  # check if current frame intersects with bad states, no trans
 | |
|         is_sat = self.s_bad.check()
 | |
|         if is_sat == sat:
 | |
|            m = self.s_bad.model()
 | |
|            cube = self.project0(m)
 | |
|            props = cube + self.projectI(m)
 | |
|            self.s_good.push()
 | |
|            self.s_good.add(R)
 | |
|            is_sat2 = self.s_good.check(props)
 | |
|            assert is_sat2 == unsat
 | |
|            core = self.s_good.unsat_core()
 | |
|            assert core
 | |
|            core = [c for c in core if c in set(cube)]
 | |
|            self.s_good.pop()
 | |
|         self.s_bad.pop()
 | |
|         return is_sat, core
 | |
| 
 | |
|     # A state s0 and level f0 such that
 | |
|     # not(s0) is f0-1 inductive
 | |
|     def quip_blocked(self, s0, f0):
 | |
|         self.push_heap(QGoal(self.next(s0), None, f0, must, 0))
 | |
|         while self.goals:
 | |
|             f, g = heapq.heappop(self.goals)
 | |
|             sys.stdout.write("%d." % f)
 | |
|             if not g.must:
 | |
|                 self.count_may -= 1
 | |
|             sys.stdout.flush()
 | |
|             if f == 0:
 | |
|                 if g.must:
 | |
|                     s = fd_solver()
 | |
|                     s.add(self.init)
 | |
|                     s.add(self.prev(g.cube))
 | |
|                     # since init is a complete assignment, so g.cube must equal to init in sat solver
 | |
|                     assert is_sat == s.check()
 | |
|                     if verbose:
 | |
|                         print("")
 | |
|                     return g
 | |
|                 self.add_reachable(self.init, g.parent.cube)
 | |
|                 continue
 | |
| 
 | |
|             r0 = self.reachable.intersect(self.prev(g.cube))
 | |
|             if r0 is not None:
 | |
|                 if g.must:
 | |
|                     if verbose:
 | |
|                         print ""
 | |
|                     s = fd_solver()
 | |
|                     s.add(self.trans)
 | |
|                     # make it as a concrete reachable state
 | |
|                     # intersect returns an And(...), so use children to get cube list
 | |
|                     g.cube = r0.children()
 | |
|                     while True:
 | |
|                         is_sat = s.check(self.next(g.cube))
 | |
|                         assert is_sat == sat
 | |
|                         r = self.next(self.project0(s.model()))
 | |
|                         r = self.reachable.intersect(self.prev(r))
 | |
|                         child = QGoal(self.next(r.children()), g, 0, g.must, 0)
 | |
|                         g = child
 | |
|                         if not check_disjoint(self.init, self.prev(g.cube)):
 | |
|                             # g is init, break the loop
 | |
|                             break
 | |
|                     init = g
 | |
|                     while g.parent is not None:
 | |
|                         g.parent.level = g.level + 1
 | |
|                         g = g.parent
 | |
|                     return init
 | |
|                 if g.parent is not None:
 | |
|                     self.add_reachable(r0, g.parent.cube)
 | |
|                 continue
 | |
| 
 | |
|             cube = None
 | |
|             is_sat = sat
 | |
|             f_1 = len(self.frames) - 1
 | |
|             while f_1 >= f:
 | |
|                 for l in self.frames[f_1]:
 | |
|                     if not l.bad and len(l.cube) > 0 and set(l.cube).issubset(g.cube):
 | |
|                         cube = l.cube
 | |
|                         is_sat == unsat
 | |
|                         break
 | |
|                 f_1 -= 1
 | |
|             if cube is None:
 | |
|                 cube, f_1, is_sat = self.is_inductive(f, g.cube)
 | |
|             if is_sat == unsat:
 | |
|                 self.frames[f_1].add(QLemma(self.prev(cube)))
 | |
|                 self.block_cube(f_1, self.prev(cube))
 | |
|                 if f_1 < f0:
 | |
|                     # learned clause might also be able to block same bad states in higher level
 | |
|                     if set(list(cube)) != set(list(g.cube)):
 | |
|                         self.push_heap(QGoal(cube, None, f_1 + 1, may, 0))
 | |
|                         self.count_may += 1
 | |
|                     else:
 | |
|                         # re-queue g.cube in higher level, here g.parent is simply for tracking down the trace when output.
 | |
|                         self.push_heap(QGoal(g.cube, g.parent, f_1 + 1, g.must, 0))
 | |
|                         if not g.must:
 | |
|                             self.count_may += 1
 | |
|             else:
 | |
|                 # qcube is a predecessor of g
 | |
|                 qcube = QGoal(cube, g, f_1 - 1, g.must, 0)
 | |
|                 if not g.must:
 | |
|                     self.count_may += 1
 | |
|                 self.push_heap(qcube)
 | |
| 
 | |
|         if verbose:
 | |
|             print("")
 | |
|         return None
 | |
| 
 | |
|     # Check if there are two states next to each other that have the same clauses.
 | |
|     def is_valid(self):
 | |
|         i = 1
 | |
|         inv = None
 | |
|         while True:
 | |
|             # self.states[].R contains full lemmas
 | |
|             # self.frames[] contains delta-encoded lemmas
 | |
|             while len(self.states) <= i+1:
 | |
|                 self.add_solver()
 | |
|             while len(self.frames) <= i+1:
 | |
|                 self.frames.append(set())
 | |
|             duplicates = set([])
 | |
|             for l in self.frames[i+1]:
 | |
|                 if l in self.frames[i]:
 | |
|                     duplicates |= {l}
 | |
|             self.frames[i] = self.frames[i] - duplicates
 | |
|             pushed = set([])
 | |
|             for l in (self.frames[i] - self.frames[i+1]):
 | |
|                 if not l.bad:
 | |
|                     s = self.states[i].solver
 | |
|                     s.push()
 | |
|                     s.add(self.next(Not(l.clause)))
 | |
|                     s.add(l.clause)
 | |
|                     is_sat = s.check()
 | |
|                     s.pop()
 | |
|                     if is_sat == unsat:
 | |
|                         self.frames[i+1].add(l)
 | |
|                         self.states[i+1].add(l.clause)
 | |
|                         pushed |= {l}
 | |
|             self.frames[i] = self.frames[i] - pushed
 | |
|             if (not (self.states[i].R - self.states[i+1].R)
 | |
|                 and len(self.states[i].R) != 0):
 | |
|                 inv = prune(self.states[i].R)
 | |
|                 F_inf = self.frames[i]
 | |
|                 j = i + 1
 | |
|                 while j < len(self.states):
 | |
|                     for l in F_inf:
 | |
|                         self.states[j].add(l.clause)
 | |
|                     j += 1
 | |
|                 self.frames[len(self.states)-1] = F_inf
 | |
|                 self.frames[i] = set([])
 | |
|                 break
 | |
|             elif (len(self.states[i].R) == 0
 | |
|                   and len(self.states[i+1].R) == 0):
 | |
|                 break
 | |
|             i += 1
 | |
| 
 | |
|         if inv is not None:
 | |
|             self.s_bad.push()
 | |
|             self.s_bad.add(And(inv))
 | |
|             is_sat = self.s_bad.check()
 | |
|             if is_sat == unsat:
 | |
|                 self.s_bad.pop()
 | |
|                 return And(inv)
 | |
|             self.s_bad.pop()
 | |
|         return None
 | |
| 
 | |
|     def run(self):
 | |
|         if not check_disjoint(self.init, self.bad):
 | |
|             return "goal is reached in initial state"
 | |
|         level = 0
 | |
|         while True:
 | |
|             inv = self.is_valid()  # self.add_solver() here
 | |
|             if inv is not None:
 | |
|                 return inv
 | |
|             is_sat, cube = self.unfold(level)
 | |
|             if is_sat == unsat:
 | |
|                 level += 1
 | |
|                 if verbose:
 | |
|                     print("Unfold %d" % level)
 | |
|                 sys.stdout.flush()
 | |
|             elif is_sat == sat:
 | |
|                 cex = self.quip_blocked(cube, level)
 | |
|                 if cex is not None:
 | |
|                     return cex
 | |
|             else:
 | |
|                 return is_sat
 | |
| 
 | |
| def test(file):
 | |
|     h2t = Horn2Transitions()
 | |
|     h2t.parse(file)
 | |
|     if verbose:
 | |
|         print("Test file: %s") % file
 | |
|     mp = Quip(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.inputs, h2t.xns)
 | |
|     start_time = time.time()
 | |
|     result = mp.run()
 | |
|     end_time = time.time()
 | |
|     if isinstance(result, QGoal):
 | |
|         g = result
 | |
|         if verbose:
 | |
|             print("Trace")
 | |
|         while g:
 | |
|            if verbose:
 | |
|                print(g.level, g.cube)
 | |
|            g = g.parent
 | |
|         print("--- used %.3f seconds ---" % (end_time - start_time))
 | |
|         validate(mp, result, mp.trans)
 | |
|         return
 | |
|     if isinstance(result, ExprRef):
 | |
|         if verbose:
 | |
|             print("Invariant:\n%s " % result)
 | |
|         print("--- used %.3f seconds ---" % (end_time - start_time))
 | |
|         validate(mp, result, mp.trans)
 | |
|         return
 | |
|     print(result)
 | |
| 
 | |
| def validate(var, result, trans):
 | |
|     if isinstance(result, QGoal):
 | |
|         g = result
 | |
|         s = fd_solver()
 | |
|         s.add(trans)
 | |
|         while g.parent is not None:
 | |
|             s.push()
 | |
|             s.add(var.prev(g.cube))
 | |
|             s.add(var.next(g.parent.cube))
 | |
|             assert sat == s.check()
 | |
|             s.pop()
 | |
|             g = g.parent
 | |
|         if verbose:
 | |
|             print "--- validation succeed ----"
 | |
|         return
 | |
|     if isinstance(result, ExprRef):
 | |
|         inv = result
 | |
|         s = fd_solver()
 | |
|         s.add(trans)
 | |
|         s.push()
 | |
|         s.add(var.prev(inv))
 | |
|         s.add(Not(var.next(inv)))
 | |
|         assert unsat == s.check()
 | |
|         s.pop()
 | |
|         cube = var.prev(var.init)
 | |
|         step = 0
 | |
|         while True:
 | |
|             step += 1
 | |
|             # too many steps to reach invariant
 | |
|             if step > 1000:
 | |
|                 if verbose:
 | |
|                     print "--- validation failed --"
 | |
|                 return
 | |
|             if not check_disjoint(var.prev(cube), var.prev(inv)):
 | |
|                 # reach invariant
 | |
|                 break
 | |
|             s.push()
 | |
|             s.add(cube)
 | |
|             assert s.check() == sat
 | |
|             cube = var.projectN(s.model())
 | |
|             s.pop()
 | |
|         if verbose:
 | |
|             print "--- validation succeed ----"
 | |
|         return
 | |
| 
 | |
| 
 | |
| 
 | |
| test("data/horn1.smt2")
 | |
| test("data/horn2.smt2")
 | |
| test("data/horn3.smt2")
 | |
| test("data/horn4.smt2")
 | |
| test("data/horn5.smt2")
 | |
| # test("data/horn6.smt2")  # not able to finish
 |