mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 03:32:28 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			83 lines
		
	
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			83 lines
		
	
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from z3 import *
 | |
| 
 | |
| def is_atom(t):
 | |
|     if not is_bool(t):
 | |
|         return False
 | |
|     if not is_app(t):
 | |
|         return False
 | |
|     k = t.decl().kind()
 | |
|     if k == Z3_OP_AND or k == Z3_OP_OR or k == Z3_OP_IMPLIES:
 | |
|         return False
 | |
|     if k == Z3_OP_EQ and t.arg(0).is_bool():
 | |
|         return False
 | |
|     if k == Z3_OP_TRUE or k == Z3_OP_FALSE or k == Z3_OP_XOR or k == Z3_OP_NOT:
 | |
|         return False
 | |
|     return True
 | |
| 
 | |
| def atoms(fml):
 | |
|     visited = set([])
 | |
|     atms = set([])
 | |
|     def atoms_rec(t, visited, atms):
 | |
|         if t in visited:
 | |
|             return
 | |
|         visited |= { t }
 | |
|         if is_atom(t):
 | |
|             atms |= { t }
 | |
|         for s in t.children():
 | |
|             atoms_rec(s, visited, atms)
 | |
|     atoms_rec(fml, visited, atms)
 | |
|     return atms
 | |
| 
 | |
| def atom2literal(m, a):
 | |
|     if is_true(m.eval(a)):
 | |
|         return a
 | |
|     return Not(a)
 | |
| 
 | |
| # Extract subset of atoms used to satisfy the negation
 | |
| # of a formula.
 | |
| # snot is a solver for Not(fml)
 | |
| # s    is a solver for fml
 | |
| # m    is a model for Not(fml)
 | |
| # evaluate each atom in fml using m and create
 | |
| # literals corresponding to the sign of the evaluation.
 | |
| # If the model evaluates atoms to false, the literal is
 | |
| # negated.
 | |
| # 
 | |
| #
 | |
| def implicant(atoms, s, snot):
 | |
|     m = snot.model()
 | |
|     lits = [atom2literal(m, a) for a in atoms]
 | |
|     is_sat = s.check(lits)
 | |
|     assert is_sat == unsat
 | |
|     core = s.unsat_core()
 | |
|     return Or([mk_not(c) for c in core])
 | |
| 
 | |
| #
 | |
| # Extract a CNF representation of fml
 | |
| # The procedure uses two solvers
 | |
| # Enumerate models for Not(fml)
 | |
| # Use the enumerated model to identify literals
 | |
| # that imply Not(fml)
 | |
| # The CNF of fml is a conjunction of the
 | |
| # negation of these literals.
 | |
| #
 | |
| 
 | |
| def to_cnf(fml):
 | |
|     atms = atoms(fml)
 | |
|     s = Solver()
 | |
|     snot = Solver()
 | |
|     snot.add(Not(fml))
 | |
|     s.add(fml)
 | |
| 
 | |
|     while sat == snot.check():
 | |
|         clause = implicant(atms, s, snot)
 | |
|         yield clause
 | |
|         snot.add(clause)
 | |
| 
 | |
|         
 | |
| a, b, c, = Bools('a b c')
 | |
| fml = Or(And(a, b), And(Not(a), c))
 | |
| 
 | |
| for clause in to_cnf(fml):
 | |
|     print(clause)
 | |
|     
 |