3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 03:15:50 +00:00
z3/src/math/simplex/model_based_opt.cpp
Nikolaj Bjorner cd0af999a8 fix #6302
crash due to not checking for dead rows.
non-termination due to solving div and mod separately.
To ensure termination one needs to at least process them simultaneously, otherwise the metric of number-of-terms x under number of mod/div does not decrease. Substituting in K*y + z under either a mod or div increases the number of terms under a mod/div when eliminating only one of the kinds.
Currently handling divides constraints separately because pre-existing solution uses the model to determine z as a constant between 0 and K-1. The treatment of mod/div is supposed to be more general and use a variable while at the same time reducing the mod/div terms where the eliminated variable is used (the variable z is not added under the mod/div terms, but instead the model is used to determine cut-offs to calculate mod/div directly.
2022-08-29 14:32:13 -07:00

1638 lines
57 KiB
C++

/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
model_based_opt.cpp
Abstract:
Model-based optimization and projection for linear real, integer arithmetic.
Author:
Nikolaj Bjorner (nbjorner) 2016-27-4
Revision History:
--*/
#include "math/simplex/model_based_opt.h"
#include "util/uint_set.h"
#include "util/z3_exception.h"
std::ostream& operator<<(std::ostream& out, opt::ineq_type ie) {
switch (ie) {
case opt::t_eq: return out << " = ";
case opt::t_lt: return out << " < ";
case opt::t_le: return out << " <= ";
case opt::t_divides: return out << " divides ";
case opt::t_mod: return out << " mod ";
case opt::t_div: return out << " div ";
}
return out;
}
namespace opt {
/**
* Convert a row ax + coeffs + coeff = value into a definition for x
* x = (value - coeffs - coeff)/a
* as backdrop we have existing assignments to x and other variables that
* satisfy the equality with value, and such that value satisfies
* the row constraint ( = , <= , < , mod)
*/
model_based_opt::def::def(row const& r, unsigned x) {
for (var const & v : r.m_vars) {
if (v.m_id != x) {
m_vars.push_back(v);
}
else {
m_div = -v.m_coeff;
}
}
m_coeff = r.m_coeff;
switch (r.m_type) {
case opt::t_lt:
m_coeff += m_div;
break;
case opt::t_le:
// for: ax >= t, then x := (t + a - 1) div a
if (m_div.is_pos()) {
m_coeff += m_div;
m_coeff -= rational::one();
}
break;
default:
break;
}
normalize();
SASSERT(m_div.is_pos());
}
model_based_opt::def model_based_opt::def::operator+(def const& other) const {
def result;
vector<var> const& vs1 = m_vars;
vector<var> const& vs2 = other.m_vars;
vector<var> & vs = result.m_vars;
rational c1(1), c2(1);
if (m_div != other.m_div) {
c1 = other.m_div;
c2 = m_div;
}
unsigned i = 0, j = 0;
while (i < vs1.size() || j < vs2.size()) {
unsigned v1 = UINT_MAX, v2 = UINT_MAX;
if (i < vs1.size()) v1 = vs1[i].m_id;
if (j < vs2.size()) v2 = vs2[j].m_id;
if (v1 == v2) {
vs.push_back(vs1[i]);
vs.back().m_coeff *= c1;
vs.back().m_coeff += c2 * vs2[j].m_coeff;
++i; ++j;
if (vs.back().m_coeff.is_zero()) {
vs.pop_back();
}
}
else if (v1 < v2) {
vs.push_back(vs1[i]);
vs.back().m_coeff *= c1;
}
else {
vs.push_back(vs2[j]);
vs.back().m_coeff *= c2;
}
}
result.m_div = c1*m_div;
result.m_coeff = (m_coeff*c1) + (other.m_coeff*c2);
result.normalize();
return result;
}
model_based_opt::def model_based_opt::def::operator/(rational const& r) const {
def result(*this);
result.m_div *= r;
result.normalize();
return result;
}
model_based_opt::def model_based_opt::def::operator*(rational const& n) const {
def result(*this);
for (var& v : result.m_vars) {
v.m_coeff *= n;
}
result.m_coeff *= n;
result.normalize();
return result;
}
model_based_opt::def model_based_opt::def::operator+(rational const& n) const {
def result(*this);
result.m_coeff += n * result.m_div;
result.normalize();
return result;
}
void model_based_opt::def::normalize() {
if (!m_div.is_int()) {
rational den = denominator(m_div);
SASSERT(den > 1);
for (var& v : m_vars)
v.m_coeff *= den;
m_coeff *= den;
m_div *= den;
}
if (m_div.is_neg()) {
for (var& v : m_vars)
v.m_coeff.neg();
m_coeff.neg();
m_div.neg();
}
if (m_div.is_one())
return;
rational g(m_div);
if (!m_coeff.is_int())
return;
g = gcd(g, m_coeff);
for (var const& v : m_vars) {
if (!v.m_coeff.is_int())
return;
g = gcd(g, abs(v.m_coeff));
if (g.is_one())
break;
}
if (!g.is_one()) {
for (var& v : m_vars)
v.m_coeff /= g;
m_coeff /= g;
m_div /= g;
}
}
model_based_opt::model_based_opt() {
m_rows.push_back(row());
}
bool model_based_opt::invariant() {
for (unsigned i = 0; i < m_rows.size(); ++i) {
if (!invariant(i, m_rows[i])) {
return false;
}
}
return true;
}
#define PASSERT(_e_) { CTRACE("qe", !(_e_), display(tout, r); display(tout);); SASSERT(_e_); }
bool model_based_opt::invariant(unsigned index, row const& r) {
vector<var> const& vars = r.m_vars;
for (unsigned i = 0; i < vars.size(); ++i) {
// variables in each row are sorted and have non-zero coefficients
PASSERT(i + 1 == vars.size() || vars[i].m_id < vars[i+1].m_id);
PASSERT(!vars[i].m_coeff.is_zero());
PASSERT(index == 0 || m_var2row_ids[vars[i].m_id].contains(index));
}
PASSERT(r.m_value == eval(r));
PASSERT(r.m_type != t_eq || r.m_value.is_zero());
// values satisfy constraints
PASSERT(index == 0 || r.m_type != t_lt || r.m_value.is_neg());
PASSERT(index == 0 || r.m_type != t_le || !r.m_value.is_pos());
PASSERT(index == 0 || r.m_type != t_divides || (mod(r.m_value, r.m_mod).is_zero()));
PASSERT(index == 0 || r.m_type != t_mod || r.m_id < m_var2value.size());
PASSERT(index == 0 || r.m_type != t_div || r.m_id < m_var2value.size());
return true;
}
// a1*x + obj
// a2*x + t2 <= 0
// a3*x + t3 <= 0
// a4*x + t4 <= 0
// a1 > 0, a2 > 0, a3 > 0, a4 < 0
// x <= -t2/a2
// x <= -t2/a3
// determine lub among these.
// then resolve lub with others
// e.g., -t2/a2 <= -t3/a3, then
// replace inequality a3*x + t3 <= 0 by -t2/a2 + t3/a3 <= 0
// mark a4 as invalid.
//
// a1 < 0, a2 < 0, a3 < 0, a4 > 0
// x >= t2/a2
// x >= t3/a3
// determine glb among these
// the resolve glb with others.
// e.g. t2/a2 >= t3/a3
// then replace a3*x + t3 by t3/a3 - t2/a2 <= 0
//
inf_eps model_based_opt::maximize() {
SASSERT(invariant());
unsigned_vector bound_trail, bound_vars;
TRACE("opt", display(tout << "tableau\n"););
while (!objective().m_vars.empty()) {
var v = objective().m_vars.back();
unsigned x = v.m_id;
rational const& coeff = v.m_coeff;
unsigned bound_row_index;
rational bound_coeff;
if (find_bound(x, bound_row_index, bound_coeff, coeff.is_pos())) {
SASSERT(!bound_coeff.is_zero());
TRACE("opt", display(tout << "update: " << v << " ", objective());
for (unsigned above : m_above) {
display(tout << "resolve: ", m_rows[above]);
});
for (unsigned above : m_above) {
resolve(bound_row_index, bound_coeff, above, x);
}
for (unsigned below : m_below) {
resolve(bound_row_index, bound_coeff, below, x);
}
// coeff*x + objective <= ub
// a2*x + t2 <= 0
// => coeff*x <= -t2*coeff/a2
// objective + t2*coeff/a2 <= ub
mul_add(false, m_objective_id, - coeff/bound_coeff, bound_row_index);
retire_row(bound_row_index);
bound_trail.push_back(bound_row_index);
bound_vars.push_back(x);
}
else {
TRACE("opt", display(tout << "unbound: " << v << " ", objective()););
update_values(bound_vars, bound_trail);
return inf_eps::infinity();
}
}
//
// update the evaluation of variables to satisfy the bound.
//
update_values(bound_vars, bound_trail);
rational value = objective().m_value;
if (objective().m_type == t_lt) {
return inf_eps(inf_rational(value, rational(-1)));
}
else {
return inf_eps(inf_rational(value));
}
}
void model_based_opt::update_value(unsigned x, rational const& val) {
rational old_val = m_var2value[x];
m_var2value[x] = val;
SASSERT(val.is_int() || !is_int(x));
unsigned_vector const& row_ids = m_var2row_ids[x];
for (unsigned row_id : row_ids) {
rational coeff = get_coefficient(row_id, x);
if (coeff.is_zero()) {
continue;
}
row & r = m_rows[row_id];
rational delta = coeff * (val - old_val);
r.m_value += delta;
SASSERT(invariant(row_id, r));
}
}
void model_based_opt::update_values(unsigned_vector const& bound_vars, unsigned_vector const& bound_trail) {
for (unsigned i = bound_trail.size(); i-- > 0; ) {
unsigned x = bound_vars[i];
row& r = m_rows[bound_trail[i]];
rational val = r.m_coeff;
rational old_x_val = m_var2value[x];
rational new_x_val;
rational x_coeff, eps(0);
vector<var> const& vars = r.m_vars;
for (var const& v : vars) {
if (x == v.m_id) {
x_coeff = v.m_coeff;
}
else {
val += m_var2value[v.m_id]*v.m_coeff;
}
}
SASSERT(!x_coeff.is_zero());
new_x_val = -val/x_coeff;
if (r.m_type == t_lt) {
eps = abs(old_x_val - new_x_val)/rational(2);
eps = std::min(rational::one(), eps);
SASSERT(!eps.is_zero());
//
// ax + t < 0
// <=> x < -t/a
// <=> x := -t/a - epsilon
//
if (x_coeff.is_pos()) {
new_x_val -= eps;
}
//
// -ax + t < 0
// <=> -ax < -t
// <=> -x < -t/a
// <=> x > t/a
// <=> x := t/a + epsilon
//
else {
new_x_val += eps;
}
}
TRACE("opt", display(tout << "v" << x
<< " coeff_x: " << x_coeff
<< " old_x_val: " << old_x_val
<< " new_x_val: " << new_x_val
<< " eps: " << eps << " ", r); );
m_var2value[x] = new_x_val;
r.m_value = eval(r);
SASSERT(invariant(bound_trail[i], r));
}
// update and check bounds for all other affected rows.
for (unsigned i = bound_trail.size(); i-- > 0; ) {
unsigned x = bound_vars[i];
unsigned_vector const& row_ids = m_var2row_ids[x];
for (unsigned row_id : row_ids) {
row & r = m_rows[row_id];
r.m_value = eval(r);
SASSERT(invariant(row_id, r));
}
}
SASSERT(invariant());
}
bool model_based_opt::find_bound(unsigned x, unsigned& bound_row_index, rational& bound_coeff, bool is_pos) {
bound_row_index = UINT_MAX;
rational lub_val;
rational const& x_val = m_var2value[x];
unsigned_vector const& row_ids = m_var2row_ids[x];
uint_set visited;
m_above.reset();
m_below.reset();
for (unsigned row_id : row_ids) {
SASSERT(row_id != m_objective_id);
if (visited.contains(row_id))
continue;
visited.insert(row_id);
row& r = m_rows[row_id];
if (!r.m_alive)
continue;
rational a = get_coefficient(row_id, x);
if (a.is_zero()) {
// skip
}
else if (a.is_pos() == is_pos || r.m_type == t_eq) {
rational value = x_val - (r.m_value/a);
if (bound_row_index == UINT_MAX) {
lub_val = value;
bound_row_index = row_id;
bound_coeff = a;
}
else if ((value == lub_val && r.m_type == opt::t_lt) ||
(is_pos && value < lub_val) ||
(!is_pos && value > lub_val)) {
m_above.push_back(bound_row_index);
lub_val = value;
bound_row_index = row_id;
bound_coeff = a;
}
else
m_above.push_back(row_id);
}
else
m_below.push_back(row_id);
}
return bound_row_index != UINT_MAX;
}
void model_based_opt::retire_row(unsigned row_id) {
SASSERT(!m_retired_rows.contains(row_id));
m_rows[row_id].m_alive = false;
m_retired_rows.push_back(row_id);
}
rational model_based_opt::eval(unsigned x) const {
return m_var2value[x];
}
rational model_based_opt::eval(def const& d) const {
vector<var> const& vars = d.m_vars;
rational val = d.m_coeff;
for (var const& v : vars) {
val += v.m_coeff * eval(v.m_id);
}
val /= d.m_div;
return val;
}
rational model_based_opt::eval(row const& r) const {
vector<var> const& vars = r.m_vars;
rational val = r.m_coeff;
for (var const& v : vars) {
val += v.m_coeff * eval(v.m_id);
}
return val;
}
rational model_based_opt::eval(vector<var> const& coeffs) const {
rational val(0);
for (var const& v : coeffs)
val += v.m_coeff * eval(v.m_id);
return val;
}
rational model_based_opt::get_coefficient(unsigned row_id, unsigned var_id) const {
return m_rows[row_id].get_coefficient(var_id);
}
rational model_based_opt::row::get_coefficient(unsigned var_id) const {
if (m_vars.empty())
return rational::zero();
unsigned lo = 0, hi = m_vars.size();
while (lo < hi) {
unsigned mid = lo + (hi - lo)/2;
SASSERT(mid < hi);
unsigned id = m_vars[mid].m_id;
if (id == var_id) {
lo = mid;
break;
}
if (id < var_id)
lo = mid + 1;
else
hi = mid;
}
if (lo == m_vars.size())
return rational::zero();
unsigned id = m_vars[lo].m_id;
if (id == var_id)
return m_vars[lo].m_coeff;
else
return rational::zero();
}
model_based_opt::row& model_based_opt::row::normalize() {
#if 0
if (m_type == t_divides || m_type == t_mod || m_type == t_div)
return *this;
rational D(denominator(abs(m_coeff)));
if (D == 0)
D = 1;
for (auto const& [id, coeff] : m_vars)
if (coeff != 0)
D = lcm(D, denominator(abs(coeff)));
if (D == 1)
return *this;
SASSERT(D > 0);
for (auto & [id, coeff] : m_vars)
coeff *= D;
m_coeff *= D;
#endif
return *this;
}
//
// Let
// row1: t1 + a1*x <= 0
// row2: t2 + a2*x <= 0
//
// assume a1, a2 have the same signs:
// (t2 + a2*x) <= (t1 + a1*x)*a2/a1
// <=> t2*a1/a2 - t1 <= 0
// <=> t2 - t1*a2/a1 <= 0
//
// assume a1 > 0, -a2 < 0:
// t1 + a1*x <= 0, t2 - a2*x <= 0
// t2/a2 <= -t1/a1
// t2 + t1*a2/a1 <= 0
// assume -a1 < 0, a2 > 0:
// t1 - a1*x <= 0, t2 + a2*x <= 0
// t1/a1 <= -t2/a2
// t2 + t1*a2/a1 <= 0
//
// the resolvent is the same in all cases (simpler proof should exist)
//
// assume a1 < 0, -a1 = a2:
// t1 <= a2*div(t2, a2)
//
void model_based_opt::resolve(unsigned row_src, rational const& a1, unsigned row_dst, unsigned x) {
SASSERT(a1 == get_coefficient(row_src, x));
SASSERT(!a1.is_zero());
SASSERT(row_src != row_dst);
if (m_rows[row_dst].m_alive) {
rational a2 = get_coefficient(row_dst, x);
if (is_int(x)) {
TRACE("opt",
tout << x << ": " << a1 << " " << a2 << ": ";
display(tout, m_rows[row_dst]);
display(tout, m_rows[row_src]););
if (a1.is_pos() != a2.is_pos() || m_rows[row_src].m_type == opt::t_eq) {
mul_add(x, a1, row_src, a2, row_dst);
}
else {
mul(row_dst, abs(a1));
mul_add(false, row_dst, -abs(a2), row_src);
}
TRACE("opt", display(tout << "result ", m_rows[row_dst]););
normalize(row_dst);
}
else {
mul_add(row_dst != m_objective_id && a1.is_pos() == a2.is_pos(), row_dst, -a2/a1, row_src);
}
}
}
/**
* a1 > 0
* a1*x + r1 = value
* a2*x + r2 <= 0
* ------------------
* a1*r2 - a2*r1 <= value
*/
void model_based_opt::solve(unsigned row_src, rational const& a1, unsigned row_dst, unsigned x) {
SASSERT(a1 == get_coefficient(row_src, x));
SASSERT(a1.is_pos());
SASSERT(row_src != row_dst);
if (!m_rows[row_dst].m_alive) return;
rational a2 = get_coefficient(row_dst, x);
mul(row_dst, a1);
mul_add(false, row_dst, -a2, row_src);
normalize(row_dst);
SASSERT(get_coefficient(row_dst, x).is_zero());
}
// resolution for integer rows.
void model_based_opt::mul_add(
unsigned x, rational src_c, unsigned row_src, rational dst_c, unsigned row_dst) {
row& dst = m_rows[row_dst];
row const& src = m_rows[row_src];
SASSERT(is_int(x));
SASSERT(t_le == dst.m_type && t_le == src.m_type);
SASSERT(src_c.is_int());
SASSERT(dst_c.is_int());
SASSERT(m_var2value[x].is_int());
rational abs_src_c = abs(src_c);
rational abs_dst_c = abs(dst_c);
rational x_val = m_var2value[x];
rational slack = (abs_src_c - rational::one()) * (abs_dst_c - rational::one());
rational dst_val = dst.m_value - x_val*dst_c;
rational src_val = src.m_value - x_val*src_c;
rational distance = abs_src_c * dst_val + abs_dst_c * src_val + slack;
bool use_case1 = distance.is_nonpos() || abs_src_c.is_one() || abs_dst_c.is_one();
bool use_case2 = false && abs_src_c == abs_dst_c && src_c.is_pos() != dst_c.is_pos() && !abs_src_c.is_one() && t_le == dst.m_type && t_le == src.m_type;
bool use_case3 = false && src_c.is_pos() != dst_c.is_pos() && t_le == dst.m_type && t_le == src.m_type;
if (use_case1) {
TRACE("opt", tout << "slack: " << slack << " " << src_c << " " << dst_val << " " << dst_c << " " << src_val << "\n";);
// dst <- abs_src_c*dst + abs_dst_c*src + slack
mul(row_dst, abs_src_c);
add(row_dst, slack);
mul_add(false, row_dst, abs_dst_c, row_src);
return;
}
if (use_case2 || use_case3) {
// case2:
// x*src_c + s <= 0
// -x*src_c + t <= 0
//
// -src_c*div(-s, src_c) + t <= 0
//
// Example:
// t <= 100*x <= s
// Then t <= 100*div(s, 100)
//
// case3:
// x*src_c + s <= 0
// -x*dst_c + t <= 0
// t <= x*dst_c, x*src_c <= -s ->
// t <= dst_c*div(-s, src_c) ->
// -dst_c*div(-s,src_c) + t <= 0
//
bool swapped = false;
if (src_c < 0) {
std::swap(row_src, row_dst);
std::swap(src_c, dst_c);
std::swap(abs_src_c, abs_dst_c);
swapped = true;
}
vector<var> src_coeffs, dst_coeffs;
rational src_coeff = m_rows[row_src].m_coeff;
rational dst_coeff = m_rows[row_dst].m_coeff;
for (auto const& v : m_rows[row_src].m_vars)
if (v.m_id != x)
src_coeffs.push_back(var(v.m_id, -v.m_coeff));
for (auto const& v : m_rows[row_dst].m_vars)
if (v.m_id != x)
dst_coeffs.push_back(v);
unsigned v = UINT_MAX;
if (src_coeffs.empty())
dst_coeff -= abs_dst_c*div(-src_coeff, abs_src_c);
else
v = add_div(src_coeffs, -src_coeff, abs_src_c);
if (v != UINT_MAX) dst_coeffs.push_back(var(v, -abs_dst_c));
if (swapped)
std::swap(row_src, row_dst);
retire_row(row_dst);
add_constraint(dst_coeffs, dst_coeff, t_le);
return;
}
//
// create finite disjunction for |b|.
// exists x, z in [0 .. |b|-2] . b*x + s + z = 0 && ax + t <= 0 && bx + s <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && ax + t <= 0 && bx + s <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && bx + s <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && -z - s + s <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && -z <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a*n_sign(b)(s + z) + |b|t <= 0
// <=>
// exists z in [0 .. |b|-2] . |b| | (z + s) && a*n_sign(b)(s + z) + |b|t <= 0
//
TRACE("qe", tout << "finite disjunction " << distance << " " << src_c << " " << dst_c << "\n";);
vector<var> coeffs;
if (abs_dst_c <= abs_src_c) {
rational z = mod(dst_val, abs_dst_c);
if (!z.is_zero()) z = abs_dst_c - z;
mk_coeffs_without(coeffs, dst.m_vars, x);
add_divides(coeffs, dst.m_coeff + z, abs_dst_c);
add(row_dst, z);
mul(row_dst, src_c * n_sign(dst_c));
mul_add(false, row_dst, abs_dst_c, row_src);
}
else {
// z := b - (s + bx) mod b
// := b - s mod b
// b | s + z <=> b | s + b - s mod b <=> b | s - s mod b
rational z = mod(src_val, abs_src_c);
if (!z.is_zero()) z = abs_src_c - z;
mk_coeffs_without(coeffs, src.m_vars, x);
add_divides(coeffs, src.m_coeff + z, abs_src_c);
mul(row_dst, abs_src_c);
add(row_dst, z * dst_c * n_sign(src_c));
mul_add(false, row_dst, dst_c * n_sign(src_c), row_src);
}
}
void model_based_opt::mk_coeffs_without(vector<var>& dst, vector<var> const& src, unsigned x) {
for (var const & v : src) {
if (v.m_id != x) dst.push_back(v);
}
}
rational model_based_opt::n_sign(rational const& b) const {
return rational(b.is_pos()?-1:1);
}
void model_based_opt::mul(unsigned dst, rational const& c) {
if (c.is_one())
return;
row& r = m_rows[dst];
for (auto & v : r.m_vars)
v.m_coeff *= c;
r.m_mod *= c;
r.m_coeff *= c;
if (r.m_type != t_div && r.m_type != t_mod)
r.m_value *= c;
}
void model_based_opt::add(unsigned dst, rational const& c) {
row& r = m_rows[dst];
r.m_coeff += c;
r.m_value += c;
}
void model_based_opt::sub(unsigned dst, rational const& c) {
row& r = m_rows[dst];
r.m_coeff -= c;
r.m_value -= c;
}
void model_based_opt::normalize(unsigned row_id) {
row& r = m_rows[row_id];
if (!r.m_alive)
return;
if (r.m_vars.empty()) {
retire_row(row_id);
return;
}
if (r.m_type == t_divides)
return;
if (r.m_type == t_mod)
return;
if (r.m_type == t_div)
return;
rational g(abs(r.m_vars[0].m_coeff));
bool all_int = g.is_int();
for (unsigned i = 1; all_int && !g.is_one() && i < r.m_vars.size(); ++i) {
rational const& coeff = r.m_vars[i].m_coeff;
if (coeff.is_int()) {
g = gcd(g, abs(coeff));
}
else {
all_int = false;
}
}
if (all_int && !r.m_coeff.is_zero()) {
if (r.m_coeff.is_int()) {
g = gcd(g, abs(r.m_coeff));
}
else {
all_int = false;
}
}
if (all_int && !g.is_one()) {
SASSERT(!g.is_zero());
mul(row_id, rational::one()/g);
}
}
//
// set row1 <- row1 + c*row2
//
void model_based_opt::mul_add(bool same_sign, unsigned row_id1, rational const& c, unsigned row_id2) {
if (c.is_zero())
return;
m_new_vars.reset();
row& r1 = m_rows[row_id1];
row const& r2 = m_rows[row_id2];
unsigned i = 0, j = 0;
while (i < r1.m_vars.size() || j < r2.m_vars.size()) {
if (j == r2.m_vars.size()) {
m_new_vars.append(r1.m_vars.size() - i, r1.m_vars.data() + i);
break;
}
if (i == r1.m_vars.size()) {
for (; j < r2.m_vars.size(); ++j) {
m_new_vars.push_back(r2.m_vars[j]);
m_new_vars.back().m_coeff *= c;
if (row_id1 != m_objective_id)
m_var2row_ids[r2.m_vars[j].m_id].push_back(row_id1);
}
break;
}
unsigned v1 = r1.m_vars[i].m_id;
unsigned v2 = r2.m_vars[j].m_id;
if (v1 == v2) {
m_new_vars.push_back(r1.m_vars[i]);
m_new_vars.back().m_coeff += c*r2.m_vars[j].m_coeff;
++i;
++j;
if (m_new_vars.back().m_coeff.is_zero())
m_new_vars.pop_back();
}
else if (v1 < v2) {
m_new_vars.push_back(r1.m_vars[i]);
++i;
}
else {
m_new_vars.push_back(r2.m_vars[j]);
m_new_vars.back().m_coeff *= c;
if (row_id1 != m_objective_id)
m_var2row_ids[r2.m_vars[j].m_id].push_back(row_id1);
++j;
}
}
r1.m_coeff += c*r2.m_coeff;
r1.m_vars.swap(m_new_vars);
r1.m_value += c*r2.m_value;
if (!same_sign && r2.m_type == t_lt)
r1.m_type = t_lt;
else if (same_sign && r1.m_type == t_lt && r2.m_type == t_lt)
r1.m_type = t_le;
SASSERT(invariant(row_id1, r1));
}
void model_based_opt::display(std::ostream& out) const {
for (auto const& r : m_rows)
display(out, r);
for (unsigned i = 0; i < m_var2row_ids.size(); ++i) {
unsigned_vector const& rows = m_var2row_ids[i];
out << i << ": ";
for (auto const& r : rows)
out << r << " ";
out << "\n";
}
}
void model_based_opt::display(std::ostream& out, vector<var> const& vars, rational const& coeff) {
unsigned i = 0;
for (var const& v : vars) {
if (i > 0 && v.m_coeff.is_pos())
out << "+ ";
++i;
if (v.m_coeff.is_one())
out << "v" << v.m_id << " ";
else
out << v.m_coeff << "*v" << v.m_id << " ";
}
if (coeff.is_pos())
out << " + " << coeff << " ";
else if (coeff.is_neg())
out << coeff << " ";
}
std::ostream& model_based_opt::display(std::ostream& out, row const& r) {
out << (r.m_alive?"a":"d") << " ";
display(out, r.m_vars, r.m_coeff);
switch (r.m_type) {
case opt::t_divides:
out << r.m_type << " " << r.m_mod << " = 0; value: " << r.m_value << "\n";
break;
case opt::t_mod:
out << r.m_type << " " << r.m_mod << " = v" << r.m_id << " ; mod: " << mod(r.m_value, r.m_mod) << "\n";
break;
case opt::t_div:
out << r.m_type << " " << r.m_mod << " = v" << r.m_id << " ; div: " << div(r.m_value, r.m_mod) << "\n";
break;
default:
out << r.m_type << " 0; value: " << r.m_value << "\n";
break;
}
return out;
}
std::ostream& model_based_opt::display(std::ostream& out, def const& r) {
display(out, r.m_vars, r.m_coeff);
if (!r.m_div.is_one()) {
out << " / " << r.m_div;
}
return out;
}
unsigned model_based_opt::add_var(rational const& value, bool is_int) {
unsigned v = m_var2value.size();
m_var2value.push_back(value);
m_var2is_int.push_back(is_int);
SASSERT(value.is_int() || !is_int);
m_var2row_ids.push_back(unsigned_vector());
return v;
}
rational model_based_opt::get_value(unsigned var) {
return m_var2value[var];
}
void model_based_opt::set_row(unsigned row_id, vector<var> const& coeffs, rational const& c, rational const& m, ineq_type rel) {
row& r = m_rows[row_id];
rational val(c);
SASSERT(r.m_vars.empty());
r.m_vars.append(coeffs.size(), coeffs.data());
bool is_int_row = !coeffs.empty();
std::sort(r.m_vars.begin(), r.m_vars.end(), var::compare());
for (auto const& c : coeffs) {
val += m_var2value[c.m_id] * c.m_coeff;
SASSERT(!is_int(c.m_id) || c.m_coeff.is_int());
is_int_row &= is_int(c.m_id);
}
r.m_alive = true;
r.m_coeff = c;
r.m_value = val;
r.m_type = rel;
r.m_mod = m;
if (is_int_row && rel == t_lt) {
r.m_type = t_le;
r.m_coeff += rational::one();
r.m_value += rational::one();
}
}
unsigned model_based_opt::new_row() {
unsigned row_id = 0;
if (m_retired_rows.empty()) {
row_id = m_rows.size();
m_rows.push_back(row());
}
else {
row_id = m_retired_rows.back();
m_retired_rows.pop_back();
SASSERT(!m_rows[row_id].m_alive);
m_rows[row_id].reset();
m_rows[row_id].m_alive = true;
}
return row_id;
}
unsigned model_based_opt::copy_row(unsigned src, unsigned excl) {
unsigned dst = new_row();
row const& r = m_rows[src];
set_row(dst, r.m_vars, r.m_coeff, r.m_mod, r.m_type);
for (auto const& v : r.m_vars) {
if (v.m_id != excl)
m_var2row_ids[v.m_id].push_back(dst);
}
SASSERT(invariant(dst, m_rows[dst]));
return dst;
}
void model_based_opt::add_lower_bound(unsigned x, rational const& lo) {
vector<var> coeffs;
coeffs.push_back(var(x, rational::minus_one()));
add_constraint(coeffs, lo, t_le);
}
void model_based_opt::add_upper_bound(unsigned x, rational const& hi) {
vector<var> coeffs;
coeffs.push_back(var(x, rational::one()));
add_constraint(coeffs, -hi, t_le);
}
void model_based_opt::add_constraint(vector<var> const& coeffs, rational const& c, ineq_type rel) {
add_constraint(coeffs, c, rational::zero(), rel, 0);
}
void model_based_opt::add_divides(vector<var> const& coeffs, rational const& c, rational const& m) {
rational g(c);
for (auto const& [v, coeff] : coeffs)
g = gcd(coeff, g);
if ((g/m).is_int())
return;
add_constraint(coeffs, c, m, t_divides, 0);
}
unsigned model_based_opt::add_mod(vector<var> const& coeffs, rational const& c, rational const& m) {
rational value = c;
for (auto const& var : coeffs)
value += var.m_coeff * m_var2value[var.m_id];
unsigned v = add_var(mod(value, m), true);
add_constraint(coeffs, c, m, t_mod, v);
return v;
}
unsigned model_based_opt::add_div(vector<var> const& coeffs, rational const& c, rational const& m) {
rational value = c;
for (auto const& var : coeffs)
value += var.m_coeff * m_var2value[var.m_id];
unsigned v = add_var(div(value, m), true);
add_constraint(coeffs, c, m, t_div, v);
return v;
}
unsigned model_based_opt::add_constraint(vector<var> const& coeffs, rational const& c, rational const& m, ineq_type rel, unsigned id) {
auto const& r = m_rows.back();
if (r.m_vars == coeffs && r.m_coeff == c && r.m_mod == m && r.m_type == rel && r.m_id == id && r.m_alive)
return m_rows.size() - 1;
unsigned row_id = new_row();
set_row(row_id, coeffs, c, m, rel);
m_rows[row_id].m_id = id;
for (var const& coeff : coeffs)
m_var2row_ids[coeff.m_id].push_back(row_id);
SASSERT(invariant(row_id, m_rows[row_id]));
normalize(row_id);
return row_id;
}
void model_based_opt::set_objective(vector<var> const& coeffs, rational const& c) {
set_row(m_objective_id, coeffs, c, rational::zero(), t_le);
}
void model_based_opt::get_live_rows(vector<row>& rows) {
for (row & r : m_rows)
if (r.m_alive)
rows.push_back(r.normalize());
}
//
// pick glb and lub representative.
// The representative is picked such that it
// represents the fewest inequalities.
// The constraints that enforce a glb or lub are not forced.
// The constraints that separate the glb from ub or the lub from lb
// are not forced.
// In other words, suppose there are
// . N inequalities of the form t <= x
// . M inequalities of the form s >= x
// . t0 is glb among N under valuation.
// . s0 is lub among M under valuation.
// If N < M
// create the inequalities:
// t <= t0 for each t other than t0 (N-1 inequalities).
// t0 <= s for each s (M inequalities).
// If N >= M the construction is symmetric.
//
model_based_opt::def model_based_opt::project(unsigned x, bool compute_def) {
unsigned_vector& lub_rows = m_lub;
unsigned_vector& glb_rows = m_glb;
unsigned_vector& divide_rows = m_divides;
unsigned_vector& mod_rows = m_mod;
unsigned_vector& div_rows = m_div;
unsigned lub_index = UINT_MAX, glb_index = UINT_MAX;
bool lub_strict = false, glb_strict = false;
rational lub_val, glb_val;
rational const& x_val = m_var2value[x];
unsigned_vector const& row_ids = m_var2row_ids[x];
uint_set visited;
lub_rows.reset();
glb_rows.reset();
divide_rows.reset();
mod_rows.reset();
div_rows.reset();
bool lub_is_unit = true, glb_is_unit = true;
unsigned eq_row = UINT_MAX;
// select the lub and glb.
for (unsigned row_id : row_ids) {
if (visited.contains(row_id))
continue;
visited.insert(row_id);
row& r = m_rows[row_id];
if (!r.m_alive)
continue;
rational a = get_coefficient(row_id, x);
if (a.is_zero())
continue;
if (r.m_type == t_eq)
eq_row = row_id;
else if (r.m_type == t_mod)
mod_rows.push_back(row_id);
else if (r.m_type == t_div)
div_rows.push_back(row_id);
else if (r.m_type == t_divides)
divide_rows.push_back(row_id);
else if (a.is_pos()) {
rational lub_value = x_val - (r.m_value/a);
if (lub_rows.empty() ||
lub_value < lub_val ||
(lub_value == lub_val && r.m_type == t_lt && !lub_strict)) {
lub_val = lub_value;
lub_index = row_id;
lub_strict = r.m_type == t_lt;
}
lub_rows.push_back(row_id);
lub_is_unit &= a.is_one();
}
else {
SASSERT(a.is_neg());
rational glb_value = x_val - (r.m_value/a);
if (glb_rows.empty() ||
glb_value > glb_val ||
(glb_value == glb_val && r.m_type == t_lt && !glb_strict)) {
glb_val = glb_value;
glb_index = row_id;
glb_strict = r.m_type == t_lt;
}
glb_rows.push_back(row_id);
glb_is_unit &= a.is_minus_one();
}
}
if (!divide_rows.empty())
return solve_divides(x, divide_rows, compute_def);
if (!div_rows.empty() || !mod_rows.empty())
return solve_mod_div(x, mod_rows, div_rows, compute_def);
if (eq_row != UINT_MAX)
return solve_for(eq_row, x, compute_def);
def result;
unsigned lub_size = lub_rows.size();
unsigned glb_size = glb_rows.size();
unsigned row_index = (lub_size <= glb_size) ? lub_index : glb_index;
// There are only upper or only lower bounds.
if (row_index == UINT_MAX) {
if (compute_def) {
if (lub_index != UINT_MAX)
result = solve_for(lub_index, x, true);
else if (glb_index != UINT_MAX)
result = solve_for(glb_index, x, true);
else
result = def() + m_var2value[x];
SASSERT(eval(result) == eval(x));
}
else {
for (unsigned row_id : lub_rows) retire_row(row_id);
for (unsigned row_id : glb_rows) retire_row(row_id);
}
return result;
}
SASSERT(lub_index != UINT_MAX);
SASSERT(glb_index != UINT_MAX);
if (compute_def) {
if (lub_size <= glb_size)
result = def(m_rows[lub_index], x);
else
result = def(m_rows[glb_index], x);
}
// The number of matching lower and upper bounds is small.
if ((lub_size <= 2 || glb_size <= 2) &&
(lub_size <= 3 && glb_size <= 3) &&
(!is_int(x) || lub_is_unit || glb_is_unit)) {
for (unsigned i = 0; i < lub_size; ++i) {
unsigned row_id1 = lub_rows[i];
bool last = i + 1 == lub_size;
rational coeff = get_coefficient(row_id1, x);
for (unsigned row_id2 : glb_rows) {
if (last) {
resolve(row_id1, coeff, row_id2, x);
}
else {
unsigned row_id3 = copy_row(row_id2);
resolve(row_id1, coeff, row_id3, x);
}
}
}
for (unsigned row_id : lub_rows)
retire_row(row_id);
return result;
}
// General case.
rational coeff = get_coefficient(row_index, x);
for (unsigned row_id : lub_rows)
if (row_id != row_index)
resolve(row_index, coeff, row_id, x);
for (unsigned row_id : glb_rows)
if (row_id != row_index)
resolve(row_index, coeff, row_id, x);
retire_row(row_index);
return result;
}
//
// Given v = a*x + b mod K
//
// - remove v = a*x + b mod K
//
// case a = 1:
// - add w = b mod K
// - x |-> K*y + z, 0 <= z < K
// - if z.value + w.value < K:
// add z + w - v = 0
// - if z.value + w.value >= K:
// add z + w - v - K = 0
//
// case a != 1, gcd(a, K) = 1
// - x |-> x*y + a^-1*z, 0 <= z < K
// - add w = b mod K
// if z.value + w.value < K
// add z + w - v = 0
// if z.value + w.value >= K
// add z + w - v - K = 0
//
// case a != 1, gcd(a,K) = g != 1
// - x |-> x*y + a^-1*z, 0 <= z < K
// a*x + b mod K = v is now
// g*z + b mod K = v
// - add w = b mod K
// - 0 <= g*z.value + w.value < K*(g+1)
// - add g*z + w - v - k*K = 0 for suitable k from 0 .. g based on model
//
//
//
// Given v = a*x + b div K
// Replace x |-> K*y + z
// - w = b div K
// - v = ((a*K*y + a*z) + b) div K
// = a*y + (a*z + b) div K
// = a*y + b div K + (b mod K + a*z) div K
// = a*y + b div K + k
// where k := (b.value mod K + a*z.value) div K
// k is between 0 and a
//
// - k*K <= b mod K + a*z < (k+1)*K
//
// A better version using a^-1
// - v = (a*K*y + a^-1*a*z + b) div K
// = a*y + ((K*A + g)*z + b) div K where we write a*a^-1 = K*A + g
// = a*y + A + (g*z + b) div K
// - k*K <= b Kod m + gz < (k+1)*K
// where k is between 0 and g
// when gcd(a, K) = 1, then there are only two cases.
//
model_based_opt::def model_based_opt::solve_mod_div(unsigned x, unsigned_vector const& _mod_rows, unsigned_vector const& _div_rows, bool compute_def) {
def result;
unsigned_vector div_rows(_div_rows), mod_rows(_mod_rows);
SASSERT(!div_rows.empty() || !mod_rows.empty());
TRACE("opt", display(tout << "solve_div " << x << "\n"));
rational K(1);
for (unsigned ri : div_rows)
K = lcm(K, m_rows[ri].m_mod);
for (unsigned ri : mod_rows)
K = lcm(K, m_rows[ri].m_mod);
rational x_value = m_var2value[x];
rational z_value = mod(x_value, K);
rational y_value = div(x_value, K);
SASSERT(x_value == K * y_value + z_value);
SASSERT(0 <= z_value && z_value < K);
// add new variables
unsigned z = add_var(z_value, true);
unsigned y = add_var(y_value, true);
uint_set visited;
unsigned j = 0;
for (unsigned ri : div_rows) {
if (visited.contains(ri))
continue;
row& r = m_rows[ri];
mul(ri, K / r.m_mod);
r.m_alive = false;
visited.insert(ri);
div_rows[j++] = ri;
}
div_rows.shrink(j);
j = 0;
for (unsigned ri : mod_rows) {
if (visited.contains(ri))
continue;
m_rows[ri].m_alive = false;
visited.insert(ri);
mod_rows[j++] = ri;
}
mod_rows.shrink(j);
// replace x by K*y + z in other rows.
for (unsigned ri : m_var2row_ids[x]) {
if (visited.contains(ri))
continue;
replace_var(ri, x, K, y, rational::one(), z);
visited.insert(ri);
normalize(ri);
}
// add bounds for z
add_lower_bound(z, rational::zero());
add_upper_bound(z, K - 1);
// solve for x_value = K*y_value + z_value, 0 <= z_value < K.
unsigned_vector vs;
for (unsigned ri : div_rows) {
rational a = get_coefficient(ri, x);
replace_var(ri, x, rational::zero());
// add w = b div m
vector<var> coeffs = m_rows[ri].m_vars;
rational coeff = m_rows[ri].m_coeff;
unsigned w = UINT_MAX;
rational offset(0);
if (K == 1)
offset = coeff;
else if (coeffs.empty())
offset = div(coeff, K);
else
w = add_div(coeffs, coeff, K);
//
// w = b div K
// v = a*y + w + k
// k = (a*z_value + (b_value mod K)) div K
// k*K <= a*z + b mod K < (k+1)*K
//
/**
* It is based on the following claim (tested for select values of a, K)
* (define-const K Int 13)
* (declare-const b Int)
* (define-const a Int -11)
* (declare-const y Int)
* (declare-const z Int)
* (define-const w Int (div b K))
* (define-const k1 Int (+ (* a z) (mod b K)))
* (define-const k Int (div k1 K))
* (define-const x Int (+ (* K y) z))
* (define-const u Int (+ (* a x) b))
* (define-const v Int (+ (* a y) w k))
* (assert (<= 0 z))
* (assert (< z K))
* (assert (<= (* K k) k1))
* (assert (< k1 (* K (+ k 1))))
* (assert (not (= (div u K) v)))
* (check-sat)
*/
unsigned v = m_rows[ri].m_id;
rational b_value = eval(coeffs) + coeff;
rational k = div(a * z_value + mod(b_value, K), K);
vector<var> div_coeffs;
div_coeffs.push_back(var(v, rational::minus_one()));
div_coeffs.push_back(var(y, a));
if (w != UINT_MAX)
div_coeffs.push_back(var(w, rational::one()));
else if (K == 1)
div_coeffs.append(coeffs);
add_constraint(div_coeffs, k + offset, t_eq);
unsigned u = UINT_MAX;
offset = 0;
if (K == 1)
offset = 0;
else if (coeffs.empty())
offset = mod(coeff, K);
else
u = add_mod(coeffs, coeff, K);
// add a*z + (b mod K) < (k + 1)*K
vector<var> bound_coeffs;
bound_coeffs.push_back(var(z, a));
if (u != UINT_MAX)
bound_coeffs.push_back(var(u, rational::one()));
add_constraint(bound_coeffs, 1 - K * (k + 1) + offset, t_le);
// add k*K <= az + (b mod K)
for (auto& c : bound_coeffs)
c.m_coeff.neg();
add_constraint(bound_coeffs, k * K - offset, t_le);
// allow to recycle row.
retire_row(ri);
vs.push_back(v);
}
for (unsigned ri : mod_rows) {
rational a = get_coefficient(ri, x);
replace_var(ri, x, rational::zero());
// add w = b mod K
vector<var> coeffs = m_rows[ri].m_vars;
rational coeff = m_rows[ri].m_coeff;
unsigned v = m_rows[ri].m_id;
rational v_value = m_var2value[v];
unsigned w = UINT_MAX;
rational offset(0);
if (coeffs.empty() || K == 1)
offset = mod(coeff, K);
else
w = add_mod(coeffs, coeff, K);
rational w_value = w == UINT_MAX ? offset : m_var2value[w];
// add v = a*z + w - V, for k = (a*z_value + w_value) div K
// claim: (= (mod x K) (- x (* K (div x K)))))) is a theorem for every x, K != 0
rational V = v_value - a * z_value - w_value;
vector<var> mod_coeffs;
mod_coeffs.push_back(var(v, rational::minus_one()));
mod_coeffs.push_back(var(z, a));
if (w != UINT_MAX) mod_coeffs.push_back(var(w, rational::one()));
add_constraint(mod_coeffs, V + offset, t_eq);
add_lower_bound(v, rational::zero());
add_upper_bound(v, K - 1);
retire_row(ri);
vs.push_back(v);
}
for (unsigned v : vs)
project(v, false);
// project internal variables.
def y_def = project(y, compute_def);
def z_def = project(z, compute_def);
if (compute_def) {
result = (y_def * K) + z_def;
m_var2value[x] = eval(result);
}
TRACE("opt", display(tout << "solve_div done v" << x << "\n"));
return result;
}
//
// compute D and u.
//
// D = lcm(d1, d2)
// u = eval(x) mod D
//
// d1 | (a1x + t1) & d2 | (a2x + t2)
// =
// d1 | (a1(D*x' + u) + t1) & d2 | (a2(D*x' + u) + t2)
// =
// d1 | (a1*u + t1) & d2 | (a2*u + t2)
//
// x := D*x' + u
//
model_based_opt::def model_based_opt::solve_divides(unsigned x, unsigned_vector const& divide_rows, bool compute_def) {
SASSERT(!divide_rows.empty());
rational D(1);
for (unsigned idx : divide_rows) {
D = lcm(D, m_rows[idx].m_mod);
}
if (D.is_zero()) {
throw default_exception("modulo 0 is not defined");
}
if (D.is_neg()) D = abs(D);
TRACE("opt1", display(tout << "lcm: " << D << " x: v" << x << " tableau\n"););
rational val_x = m_var2value[x];
rational u = mod(val_x, D);
SASSERT(u.is_nonneg() && u < D);
for (unsigned idx : divide_rows) {
replace_var(idx, x, u);
SASSERT(invariant(idx, m_rows[idx]));
normalize(idx);
}
TRACE("opt1", display(tout << "tableau after replace x under mod\n"););
//
// update inequalities such that u is added to t and
// D is multiplied to coefficient of x.
// the interpretation of the new version of x is (x-u)/D
//
// a*x + t <= 0
// a*(D*x' + u) + t <= 0
// a*D*x' + a*u + t <= 0
//
rational new_val = (val_x - u) / D;
SASSERT(new_val.is_int());
unsigned y = add_var(new_val, true);
unsigned_vector const& row_ids = m_var2row_ids[x];
uint_set visited;
for (unsigned row_id : row_ids) {
if (visited.contains(row_id))
continue;
// x |-> D*y + u
replace_var(row_id, x, D, y, u);
visited.insert(row_id);
normalize(row_id);
}
TRACE("opt1", display(tout << "tableau after replace x by y := v" << y << "\n"););
def result = project(y, compute_def);
if (compute_def) {
result = (result * D) + u;
m_var2value[x] = eval(result);
}
TRACE("opt1", display(tout << "tableau after project y" << y << "\n"););
return result;
}
// update row with: x |-> C
void model_based_opt::replace_var(unsigned row_id, unsigned x, rational const& C) {
row& r = m_rows[row_id];
SASSERT(!get_coefficient(row_id, x).is_zero());
unsigned sz = r.m_vars.size();
unsigned i = 0, j = 0;
rational coeff(0);
for (; i < sz; ++i) {
if (r.m_vars[i].m_id == x) {
coeff = r.m_vars[i].m_coeff;
}
else {
if (i != j) {
r.m_vars[j] = r.m_vars[i];
}
++j;
}
}
if (j != sz) {
r.m_vars.shrink(j);
}
r.m_coeff += coeff*C;
r.m_value += coeff*(C - m_var2value[x]);
}
// update row with: x |-> A*y + B
void model_based_opt::replace_var(unsigned row_id, unsigned x, rational const& A, unsigned y, rational const& B) {
row& r = m_rows[row_id];
rational coeff = get_coefficient(row_id, x);
if (coeff.is_zero()) return;
if (!r.m_alive) return;
replace_var(row_id, x, B);
r.m_vars.push_back(var(y, coeff*A));
r.m_value += coeff*A*m_var2value[y];
if (!r.m_vars.empty() && r.m_vars.back().m_id > y)
std::sort(r.m_vars.begin(), r.m_vars.end(), var::compare());
m_var2row_ids[y].push_back(row_id);
SASSERT(invariant(row_id, r));
}
// update row with: x |-> A*y + B*z
void model_based_opt::replace_var(unsigned row_id, unsigned x, rational const& A, unsigned y, rational const& B, unsigned z) {
row& r = m_rows[row_id];
rational coeff = get_coefficient(row_id, x);
if (coeff.is_zero() || !r.m_alive)
return;
replace_var(row_id, x, rational::zero());
if (A != 0) r.m_vars.push_back(var(y, coeff*A));
if (B != 0) r.m_vars.push_back(var(z, coeff*B));
r.m_value += coeff*A*m_var2value[y];
r.m_value += coeff*B*m_var2value[z];
std::sort(r.m_vars.begin(), r.m_vars.end(), var::compare());
if (A != 0) m_var2row_ids[y].push_back(row_id);
if (B != 0) m_var2row_ids[z].push_back(row_id);
SASSERT(invariant(row_id, r));
}
// 3x + t = 0 & 7 | (c*x + s) & ax <= u
// 3 | -t & 21 | (-ct + 3s) & a-t <= 3u
model_based_opt::def model_based_opt::solve_for(unsigned row_id1, unsigned x, bool compute_def) {
TRACE("opt", tout << "v" << x << " := " << eval(x) << "\n" << m_rows[row_id1] << "\n";
display(tout));
rational a = get_coefficient(row_id1, x), b;
row& r1 = m_rows[row_id1];
ineq_type ty = r1.m_type;
SASSERT(!a.is_zero());
SASSERT(r1.m_alive);
if (a.is_neg()) {
a.neg();
r1.neg();
}
SASSERT(a.is_pos());
if (ty == t_lt) {
SASSERT(compute_def);
r1.m_coeff -= r1.m_value;
r1.m_type = t_le;
r1.m_value = 0;
}
if (m_var2is_int[x] && !a.is_one()) {
r1.m_coeff -= r1.m_value;
r1.m_value = 0;
vector<var> coeffs;
mk_coeffs_without(coeffs, r1.m_vars, x);
rational c = mod(-eval(coeffs), a);
add_divides(coeffs, c, a);
}
unsigned_vector const& row_ids = m_var2row_ids[x];
uint_set visited;
visited.insert(row_id1);
for (unsigned row_id2 : row_ids) {
if (visited.contains(row_id2))
continue;
visited.insert(row_id2);
row& r = m_rows[row_id2];
if (!r.m_alive)
continue;
b = get_coefficient(row_id2, x);
if (b.is_zero())
continue;
row& dst = m_rows[row_id2];
switch (dst.m_type) {
case t_eq:
case t_lt:
case t_le:
solve(row_id1, a, row_id2, x);
break;
case t_divides:
case t_mod:
case t_div:
// mod reduction already done.
UNREACHABLE();
break;
}
}
def result;
if (compute_def) {
result = def(m_rows[row_id1], x);
m_var2value[x] = eval(result);
TRACE("opt1", tout << "updated eval " << x << " := " << eval(x) << "\n";);
}
retire_row(row_id1);
TRACE("opt", display(tout << "solved v" << x << "\n"));
return result;
}
vector<model_based_opt::def> model_based_opt::project(unsigned num_vars, unsigned const* vars, bool compute_def) {
vector<def> result;
for (unsigned i = 0; i < num_vars; ++i) {
result.push_back(project(vars[i], compute_def));
TRACE("opt", display(tout << "After projecting: v" << vars[i] << "\n"););
}
return result;
}
}