mirror of
https://github.com/Z3Prover/z3
synced 2025-07-17 09:56:39 +00:00
644 lines
24 KiB
C++
644 lines
24 KiB
C++
/*++
|
|
Copyright (c) 2019 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
theory_array_bapa.cpp
|
|
|
|
Abstract:
|
|
|
|
Saturation procedure for BAPA predicates.
|
|
Assume there is a predicate
|
|
|
|
Size(S, n) for S : Array(T, Bool) and n : Int
|
|
|
|
The predicate is true if S is a set of size n.
|
|
|
|
|
|
Size(S, n), Size(T, m)
|
|
S, T are intersecting. n != m or S != T
|
|
D ---------------------------------------------------------
|
|
Size(S, n) => Size(S\T, k1), Size(S n T, k2), n = k1 + k2
|
|
Size(T, m) => Size(T\S, k3), SIze(S n T, k2), m = k2 + k3
|
|
|
|
Size(S, n)
|
|
P --------------------
|
|
Size(S, n) => n >= 0
|
|
|
|
Size(S, n), is infinite domain
|
|
B ------------------------------
|
|
Size(S, n) => default(S) = false
|
|
|
|
Size(S, n), Size(S, m)
|
|
F --------------------------------
|
|
Size(S, n), Size(S, m) => n = m
|
|
|
|
Fixing values during final check:
|
|
Size(S, n)
|
|
V -------------------
|
|
assume value(n) = n
|
|
|
|
Size(S, n), S[i1], ..., S[ik]
|
|
O -------------------------------
|
|
~distinct(i1, ... ik) or n >= k
|
|
|
|
Size(S,n)
|
|
Ak --------------------------------------------------
|
|
S[i1] & .. & S[ik] & distinct(i1, .., ik) or n < k
|
|
|
|
Q: Is this sufficient? Axiom A1 could be adjusted to add new elements i' until there are k witnesses for Size(S, k).
|
|
This is quite bad when k is very large. Instead rely on stably infiniteness or other domain properties of the theories.
|
|
|
|
When A is finite domain, or there are quantifiers there could be constraints that force domain sizes so domain sizes may have
|
|
to be enforced. A succinct way would be through domain comprehension assertions.
|
|
|
|
Finite domains:
|
|
|
|
Size(S, n), is finite domain
|
|
----------------------------
|
|
S <= |A|
|
|
|
|
Size(S, n), !S[i1], .... !S[ik], S is finite domain
|
|
----------------------------------------------------------
|
|
default(S) = false or ~distinct(i1,..,ik) or |A| - k <= n
|
|
|
|
|
|
~Size(S, m) is negative on all occurrences, S is finite domain
|
|
---------------------------------------------------------------
|
|
Size(S, n) n fresh.
|
|
|
|
Model construction for infinite domains when all Size(S, m) are negative for S.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner 2019-04-13
|
|
|
|
Revision History:
|
|
|
|
*/
|
|
|
|
#include "ast/ast_util.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/rewriter/array_rewriter.h"
|
|
#include "smt/smt_context.h"
|
|
#include "smt/smt_arith_value.h"
|
|
#include "smt/theory_array_full.h"
|
|
#include "smt/theory_array_bapa.h"
|
|
|
|
#if 0
|
|
- set of native select terms that are true
|
|
- set of auxiliary select terms.
|
|
- n1, n2, n3, n4.
|
|
- a1, a2, a3, a4, a5.
|
|
-
|
|
- add select terms, such that first
|
|
#endif
|
|
|
|
namespace smt {
|
|
|
|
class theory_array_bapa::imp {
|
|
struct sz_info {
|
|
bool m_is_leaf; // has it been split into disjoint subsets already?
|
|
rational m_size; // set to >= integer if fixed in final check, otherwise -1
|
|
obj_map<enode, expr*> m_selects;
|
|
sz_info(): m_is_leaf(true), m_size(rational::minus_one()) {}
|
|
};
|
|
|
|
typedef std::pair<func_decl*, func_decl*> func_decls;
|
|
|
|
ast_manager& m;
|
|
theory_array_full& th;
|
|
arith_util m_arith;
|
|
array_util m_autil;
|
|
th_rewriter m_rw;
|
|
arith_value m_arith_value;
|
|
ast_ref_vector m_pinned;
|
|
obj_map<app, sz_info*> m_sizeof;
|
|
obj_map<expr, rational> m_size_limit;
|
|
obj_map<sort, func_decls> m_index_skolems;
|
|
obj_map<sort, func_decl*> m_size_limit_sort2skolems;
|
|
unsigned m_max_set_enumeration;
|
|
|
|
context& ctx() { return th.get_context(); }
|
|
|
|
void reset() {
|
|
for (auto& kv : m_sizeof) {
|
|
dealloc(kv.m_value);
|
|
}
|
|
}
|
|
|
|
bool is_true(expr* e) { return is_true(ctx().get_literal(e)); }
|
|
bool is_true(enode* e) { return is_true(e->get_owner()); }
|
|
bool is_true(literal l) { return ctx().is_relevant(l) && ctx().get_assignment(l) == l_true; }
|
|
bool is_leaf(sz_info& i) const { return i.m_is_leaf; }
|
|
bool is_leaf(sz_info* i) const { return is_leaf(*i); }
|
|
enode* get_root(expr* e) { return ctx().get_enode(e)->get_root(); }
|
|
bool is_select(enode* n) { return th.is_select(n); }
|
|
app_ref mk_select(expr* a, expr* i) { expr* args[2] = { a, i }; return app_ref(m_autil.mk_select(2, args), m); }
|
|
literal get_literal(expr* e) { return ctx().get_literal(e); }
|
|
literal mk_literal(expr* e) { expr_ref _e(e, m); if (!ctx().e_internalized(e)) ctx().internalize(e, false); literal lit = get_literal(e); ctx().mark_as_relevant(lit); return lit; }
|
|
literal mk_eq(expr* a, expr* b) {
|
|
expr_ref _a(a, m), _b(b, m);
|
|
literal lit = th.mk_eq(a, b, false);
|
|
ctx().mark_as_relevant(lit);
|
|
return lit;
|
|
}
|
|
void mk_th_axiom(literal l1, literal l2) {
|
|
literal lits[2] = { l1, l2 };
|
|
mk_th_axiom(2, lits);
|
|
}
|
|
void mk_th_axiom(literal l1, literal l2, literal l3) {
|
|
literal lits[3] = { l1, l2, l3 };
|
|
mk_th_axiom(3, lits);
|
|
}
|
|
void mk_th_axiom(unsigned n, literal* lits) {
|
|
TRACE("card", ctx().display_literals_verbose(tout, n, lits) << "\n";);
|
|
IF_VERBOSE(10, ctx().display_literals_verbose(verbose_stream(), n, lits) << "\n");
|
|
ctx().mk_th_axiom(th.get_id(), n, lits);
|
|
}
|
|
|
|
void update_indices() {
|
|
for (auto const& kv : m_sizeof) {
|
|
app* k = kv.m_key;
|
|
sz_info& v = *kv.m_value;
|
|
v.m_selects.reset();
|
|
if (is_true(k) && is_leaf(v)) {
|
|
enode* set = get_root(k->get_arg(0));
|
|
for (enode* parent : enode::parents(set)) {
|
|
if (is_select(parent) && parent->get_arg(0)->get_root() == set) {
|
|
if (is_true(parent)) {
|
|
v.m_selects.insert(parent->get_arg(1)->get_root(), parent->get_owner());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
F: Size(S, k1) & Size(S, k2) => k1 = k2
|
|
*/
|
|
lbool ensure_functional() {
|
|
lbool result = l_true;
|
|
obj_map<enode, app*> parents;
|
|
for (auto const& kv : m_sizeof) {
|
|
app* sz1 = kv.m_key;
|
|
if (!is_true(sz1)) {
|
|
continue;
|
|
}
|
|
enode* r = get_root(sz1->get_arg(0));
|
|
app* sz2 = nullptr;
|
|
if (parents.find(r, sz2)) {
|
|
expr* k1 = sz1->get_arg(1);
|
|
expr* k2 = sz2->get_arg(1);
|
|
if (get_root(k1) != get_root(k2)) {
|
|
mk_th_axiom(~get_literal(sz1), ~get_literal(sz2), mk_eq(k1, k2));
|
|
result = l_false;
|
|
}
|
|
}
|
|
else {
|
|
parents.insert(r, sz1);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Enforce D
|
|
*/
|
|
lbool ensure_disjoint() {
|
|
auto i = m_sizeof.begin(), end = m_sizeof.end();
|
|
for (; i != end; ++i) {
|
|
auto& kv = *i;
|
|
if (!kv.m_value->m_is_leaf) {
|
|
continue;
|
|
}
|
|
for (auto j = i; ++j != end; ) {
|
|
if (j->m_value->m_is_leaf && !ensure_disjoint(i->m_key, j->m_key)) {
|
|
return l_false;
|
|
}
|
|
}
|
|
}
|
|
return l_true;
|
|
}
|
|
|
|
bool ensure_disjoint(app* sz1, app* sz2) {
|
|
sz_info& i1 = *m_sizeof[sz1];
|
|
sz_info& i2 = *m_sizeof[sz2];
|
|
SASSERT(i1.m_is_leaf);
|
|
SASSERT(i2.m_is_leaf);
|
|
expr* s = sz1->get_arg(0);
|
|
expr* t = sz2->get_arg(0);
|
|
if (m.get_sort(s) != m.get_sort(t)) {
|
|
return true;
|
|
}
|
|
enode* r1 = get_root(s);
|
|
enode* r2 = get_root(t);
|
|
if (r1 == r2) {
|
|
return true;
|
|
}
|
|
if (!ctx().is_diseq(r1, r2) && ctx().assume_eq(r1, r2)) {
|
|
return false;
|
|
}
|
|
if (do_intersect(i1.m_selects, i2.m_selects)) {
|
|
add_disjoint(sz1, sz2);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool do_intersect(obj_map<enode, expr*> const& s, obj_map<enode, expr*> const& t) const {
|
|
if (s.size() > t.size()) {
|
|
return do_intersect(t, s);
|
|
}
|
|
for (auto const& idx : s)
|
|
if (t.contains(idx.m_key))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void add_disjoint(app* sz1, app* sz2) {
|
|
sz_info& i1 = *m_sizeof[sz1];
|
|
sz_info& i2 = *m_sizeof[sz2];
|
|
SASSERT(i1.m_is_leaf);
|
|
SASSERT(i2.m_is_leaf);
|
|
expr* t = sz1->get_arg(0);
|
|
expr* s = sz2->get_arg(0);
|
|
expr_ref tms = mk_subtract(t, s);
|
|
expr_ref smt = mk_subtract(s, t);
|
|
expr_ref tns = mk_intersect(t, s);
|
|
#if 0
|
|
std::cout << tms << "\n";
|
|
std::cout << smt << "\n";
|
|
std::cout << tns << "\n";
|
|
#endif
|
|
if (tns == sz1) {
|
|
std::cout << "SEEN " << tms << "\n";
|
|
}
|
|
if (tns == sz2) {
|
|
std::cout << "SEEN " << smt << "\n";
|
|
}
|
|
ctx().push_trail(value_trail<context, bool>(i1.m_is_leaf, false));
|
|
ctx().push_trail(value_trail<context, bool>(i2.m_is_leaf, false));
|
|
expr_ref k1(m), k2(m), k3(m);
|
|
expr_ref sz_tms(m), sz_tns(m), sz_smt(m);
|
|
k1 = m_autil.mk_card(tms);
|
|
k2 = m_autil.mk_card(tns);
|
|
k3 = m_autil.mk_card(smt);
|
|
sz_tms = m_autil.mk_has_size(tms, k1);
|
|
sz_tns = m_autil.mk_has_size(tns, k2);
|
|
sz_smt = m_autil.mk_has_size(smt, k3);
|
|
propagate(sz1, sz_tms);
|
|
propagate(sz1, sz_tns);
|
|
propagate(sz2, sz_smt);
|
|
propagate(sz2, sz_tns);
|
|
propagate(sz1, mk_eq(k1 + k2, sz1->get_arg(1)));
|
|
propagate(sz2, mk_eq(k3 + k2, sz2->get_arg(1)));
|
|
}
|
|
|
|
expr_ref mk_subtract(expr* t, expr* s) {
|
|
expr_ref d(m_autil.mk_setminus(t, s), m);
|
|
m_rw(d);
|
|
return d;
|
|
}
|
|
|
|
expr_ref mk_intersect(expr* t, expr* s) {
|
|
expr_ref i(m_autil.mk_intersection(t, s), m);
|
|
m_rw(i);
|
|
return i;
|
|
}
|
|
|
|
void propagate(expr* assumption, expr* conseq) {
|
|
propagate(assumption, mk_literal(conseq));
|
|
}
|
|
|
|
void propagate(expr* assumption, literal conseq) {
|
|
mk_th_axiom(~mk_literal(assumption), conseq);
|
|
}
|
|
|
|
/**
|
|
Enforce V
|
|
*/
|
|
lbool ensure_values_assigned() {
|
|
lbool result = l_true;
|
|
for (auto const& kv : m_sizeof) {
|
|
app* k = kv.m_key;
|
|
sz_info& i = *kv.m_value;
|
|
if (is_leaf(&i)) {
|
|
rational value;
|
|
expr* sz = k->get_arg(1);
|
|
if (!m_arith_value.get_value(sz, value)) {
|
|
return l_undef;
|
|
}
|
|
literal lit = mk_eq(sz, m_arith.mk_int(value));
|
|
if (lit != true_literal && is_true(lit)) {
|
|
ctx().push_trail(value_trail<context, rational>(i.m_size, value));
|
|
continue;
|
|
}
|
|
ctx().set_true_first_flag(lit.var());
|
|
result = l_false;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Enforce Ak,
|
|
*/
|
|
lbool ensure_non_empty() {
|
|
for (auto const& kv : m_sizeof) {
|
|
sz_info& i = *kv.m_value;
|
|
app* set_sz = kv.m_key;
|
|
if (is_true(set_sz) && is_leaf(i) && i.m_selects.size() < i.m_size) {
|
|
expr* set = set_sz->get_arg(0);
|
|
expr_ref le(m_arith.mk_le(set_sz->get_arg(1), m_arith.mk_int(0)), m);
|
|
literal le_lit = mk_literal(le);
|
|
literal sz_lit = mk_literal(set_sz);
|
|
for (unsigned k = i.m_selects.size(); rational(k) < i.m_size; ++k) {
|
|
expr_ref idx = mk_index_skolem(set_sz, set, k);
|
|
app_ref sel(mk_select(set, idx), m);
|
|
mk_th_axiom(~sz_lit, le_lit, mk_literal(sel));
|
|
TRACE("card", tout << idx << " " << sel << " " << i.m_size << "\n";);
|
|
}
|
|
return l_false;
|
|
}
|
|
}
|
|
return l_true;
|
|
}
|
|
|
|
// create skolem function that is injective on integers (ensures uniqueness).
|
|
expr_ref mk_index_skolem(app* sz, expr* a, unsigned n) {
|
|
func_decls fg;
|
|
sort* s = m.get_sort(a);
|
|
if (!m_index_skolems.find(s, fg)) {
|
|
sort* idx_sort = get_array_domain(s, 0);
|
|
sort* dom1[2] = { s, m_arith.mk_int() };
|
|
sort* dom2[1] = { idx_sort };
|
|
func_decl* f = m.mk_fresh_func_decl("to-index", "", 2, dom1, idx_sort);
|
|
func_decl* g = m.mk_fresh_func_decl("from-index", "", 1, dom2, m_arith.mk_int());
|
|
fg = std::make_pair(f, g);
|
|
m_index_skolems.insert(s, fg);
|
|
m_pinned.push_back(f);
|
|
m_pinned.push_back(g);
|
|
m_pinned.push_back(s);
|
|
}
|
|
expr_ref nV(m_arith.mk_int(n), m);
|
|
expr_ref result(m.mk_app(fg.first, a, nV), m);
|
|
expr_ref le(m_arith.mk_le(sz->get_arg(1), nV), m);
|
|
expr_ref fr(m.mk_app(fg.second, result), m);
|
|
// set-has-size(a, k) => k <= n or g(f(a,n)) = n
|
|
mk_th_axiom(~mk_literal(sz), mk_literal(le), mk_eq(nV, fr));
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
Enforce O
|
|
*/
|
|
lbool ensure_no_overflow() {
|
|
for (auto const& kv : m_sizeof) {
|
|
if (is_true(kv.m_key) && is_leaf(kv.m_value)) {
|
|
lbool r = ensure_no_overflow(kv.m_key, *kv.m_value);
|
|
if (r != l_true) return r;
|
|
}
|
|
}
|
|
return l_true;
|
|
}
|
|
|
|
lbool ensure_no_overflow(app* sz, sz_info& info) {
|
|
SASSERT(!info.m_size.is_neg());
|
|
if (info.m_size < info.m_selects.size()) {
|
|
for (auto i = info.m_selects.begin(), e = info.m_selects.end(); i != e; ++i) {
|
|
for (auto j = i; ++j != e; ) {
|
|
if (ctx().assume_eq(i->m_key, j->m_key)) {
|
|
return l_false;
|
|
}
|
|
}
|
|
}
|
|
// if all is exhausted, then add axiom: set-has-size(s, n) & s[indices] & all-diff(indices) => n >= |indices|
|
|
literal_vector lits;
|
|
lits.push_back(~mk_literal(sz));
|
|
for (auto const& kv : info.m_selects) {
|
|
lits.push_back(~mk_literal(kv.m_value));
|
|
}
|
|
if (info.m_selects.size() > 1) {
|
|
ptr_vector<expr> args;
|
|
for (auto const& kv : info.m_selects) {
|
|
args.push_back(kv.m_key->get_owner());
|
|
}
|
|
if (info.m_selects.size() == 2) {
|
|
lits.push_back(mk_eq(args[0], args[1]));
|
|
}
|
|
else {
|
|
expr_ref diff(m.mk_distinct_expanded(args.size(), args.c_ptr()), m);
|
|
lits.push_back(~mk_literal(diff));
|
|
}
|
|
}
|
|
expr_ref ge(m_arith.mk_ge(sz->get_arg(1), m_arith.mk_int(info.m_selects.size())), m);
|
|
lits.push_back(mk_literal(ge));
|
|
mk_th_axiom(lits.size(), lits.c_ptr());
|
|
return l_false;
|
|
}
|
|
return l_true;
|
|
}
|
|
|
|
class remove_sz : public trail<context> {
|
|
ast_manager& m;
|
|
obj_map<app, sz_info*> & m_table;
|
|
app* m_obj;
|
|
public:
|
|
remove_sz(ast_manager& m, obj_map<app, sz_info*>& tab, app* t): m(m), m_table(tab), m_obj(t) { }
|
|
~remove_sz() override {}
|
|
void undo(context& ctx) override { m.dec_ref(m_obj); dealloc(m_table[m_obj]); m_table.remove(m_obj); }
|
|
};
|
|
|
|
std::ostream& display(std::ostream& out) {
|
|
for (auto const& kv : m_sizeof) {
|
|
display(out << mk_pp(kv.m_key, m) << ": ", *kv.m_value);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& display(std::ostream& out, sz_info& sz) {
|
|
return out << (sz.m_is_leaf ? "leaf": "") << " size: " << sz.m_size << " selects: " << sz.m_selects.size() << "\n";
|
|
}
|
|
|
|
public:
|
|
imp(theory_array_full& th):
|
|
m(th.get_manager()),
|
|
th(th),
|
|
m_arith(m),
|
|
m_autil(m),
|
|
m_rw(m),
|
|
m_arith_value(m),
|
|
m_pinned(m)
|
|
{
|
|
context& ctx = th.get_context();
|
|
m_arith_value.init(&ctx);
|
|
m_max_set_enumeration = 4;
|
|
}
|
|
|
|
~imp() {
|
|
reset();
|
|
}
|
|
|
|
void internalize_term(app* term) {
|
|
if (th.is_set_has_size(term)) {
|
|
internalize_size(term);
|
|
}
|
|
else if (th.is_set_card(term)) {
|
|
internalize_card(term);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Size(S, n) => n >= 0, default(S) = false
|
|
*/
|
|
void internalize_size(app* term) {
|
|
SASSERT(ctx().e_internalized(term));
|
|
literal lit = mk_literal(term);
|
|
expr* s = term->get_arg(0);
|
|
expr* n = term->get_arg(1);
|
|
mk_th_axiom(~lit, mk_literal(m_arith.mk_ge(n, m_arith.mk_int(0))));
|
|
sort_size const& sz = m.get_sort(s)->get_num_elements();
|
|
if (sz.is_infinite()) {
|
|
mk_th_axiom(~lit, mk_eq(th.mk_default(s), m.mk_false()));
|
|
}
|
|
else {
|
|
warning_msg("correct handling of finite domains is TBD");
|
|
// add upper bound on size of set.
|
|
// add case where default(S) = true, and add negative elements.
|
|
}
|
|
m_sizeof.insert(term, alloc(sz_info));
|
|
m_size_limit.insert(s, rational(2));
|
|
assert_size_limit(s, n);
|
|
m.inc_ref(term);
|
|
ctx().push_trail(remove_sz(m, m_sizeof, term));
|
|
}
|
|
|
|
/**
|
|
\brief whenever there is a cardinality function, it includes an axiom
|
|
that entails the set is finite.
|
|
*/
|
|
void internalize_card(app* term) {
|
|
SASSERT(ctx().e_internalized(term));
|
|
app_ref has_size(m_autil.mk_has_size(term->get_arg(0), term), m);
|
|
literal lit = mk_literal(has_size);
|
|
ctx().assign(lit, nullptr);
|
|
}
|
|
|
|
lbool trace_call(char const* msg, lbool r) {
|
|
if (r != l_true) {
|
|
IF_VERBOSE(2, verbose_stream() << msg << "\n");
|
|
}
|
|
return r;
|
|
}
|
|
|
|
final_check_status final_check() {
|
|
final_check_status st = m_arith_value.final_check();
|
|
if (st != FC_DONE) return st;
|
|
lbool r = trace_call("ensure_functional", ensure_functional());
|
|
if (r == l_true) update_indices();
|
|
if (r == l_true) r = trace_call("ensure_disjoint", ensure_disjoint());
|
|
if (r == l_true) r = trace_call("ensure_values_assigned", ensure_values_assigned());
|
|
if (r == l_true) r = trace_call("ensure_non_empty", ensure_non_empty());
|
|
if (r == l_true) r = trace_call("ensure_no_overflow", ensure_no_overflow());
|
|
CTRACE("card", r != l_true, display(tout););
|
|
switch (r) {
|
|
case l_true:
|
|
return FC_DONE;
|
|
case l_false:
|
|
return FC_CONTINUE;
|
|
case l_undef:
|
|
return FC_GIVEUP;
|
|
}
|
|
return FC_GIVEUP;
|
|
}
|
|
|
|
void init_model() {
|
|
for (auto const& kv : m_sizeof) {
|
|
sz_info& i = *kv.m_value;
|
|
app* sz = kv.m_key;
|
|
if (is_true(sz) && is_leaf(i) && rational(i.m_selects.size()) != i.m_size) {
|
|
warning_msg("models for BAPA is TBD");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool should_research(expr_ref_vector & unsat_core) {
|
|
expr* set, *sz;
|
|
for (auto & e : unsat_core) {
|
|
if (is_app(e) && is_size_limit(to_app(e), set, sz)) {
|
|
inc_size_limit(set, sz);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void inc_size_limit(expr* set, expr* sz) {
|
|
IF_VERBOSE(2, verbose_stream() << "inc value " << mk_pp(set, m) << "\n");
|
|
m_size_limit[set] *= rational(2);
|
|
assert_size_limit(set, sz);
|
|
}
|
|
|
|
bool is_size_limit(app* e, expr*& set, expr*& sz) {
|
|
func_decl* d = nullptr;
|
|
if (e->get_num_args() > 0 && m_size_limit_sort2skolems.find(m.get_sort(e->get_arg(0)), d) && d == e->get_decl()) {
|
|
set = e->get_arg(0);
|
|
sz = e->get_arg(1);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// has-size(s,n) & size-limit(s, n, k) => n <= k
|
|
|
|
app_ref mk_size_limit(expr* set, expr* sz) {
|
|
func_decl* sk = nullptr;
|
|
sort* s = m.get_sort(set);
|
|
if (!m_size_limit_sort2skolems.find(s, sk)) {
|
|
sort* dom[3] = { s, m_arith.mk_int(), m_arith.mk_int() };
|
|
sk = m.mk_fresh_func_decl("value-limit", "", 3, dom, m.mk_bool_sort());
|
|
m_pinned.push_back(sk);
|
|
m_size_limit_sort2skolems.insert(s, sk);
|
|
}
|
|
return app_ref(m.mk_app(sk, set, sz, m_arith.mk_int(m_size_limit[set])), m);
|
|
}
|
|
|
|
void assert_size_limit(expr* set, expr* sz) {
|
|
app_ref set_sz(m_autil.mk_has_size(set, sz), m);
|
|
app_ref lim(m_arith.mk_int(m_size_limit[set]), m);
|
|
app_ref size_limit = mk_size_limit(set, sz);
|
|
mk_th_axiom(~mk_literal(set_sz), ~mk_literal(size_limit), mk_literal(m_arith.mk_le(sz, lim)));
|
|
}
|
|
|
|
void add_theory_assumptions(expr_ref_vector & assumptions) {
|
|
for (auto const& kv : m_sizeof) {
|
|
expr* set = kv.m_key->get_arg(0);
|
|
expr* sz = kv.m_key->get_arg(1);
|
|
assumptions.push_back(mk_size_limit(set, sz));
|
|
}
|
|
TRACE("card", tout << "ASSUMPTIONS: " << assumptions << "\n";);
|
|
}
|
|
|
|
};
|
|
|
|
theory_array_bapa::theory_array_bapa(theory_array_full& th) { m_imp = alloc(imp, th); }
|
|
|
|
theory_array_bapa::~theory_array_bapa() { dealloc(m_imp); }
|
|
|
|
void theory_array_bapa::internalize_term(app* term) { m_imp->internalize_term(term); }
|
|
|
|
final_check_status theory_array_bapa::final_check() { return m_imp->final_check(); }
|
|
|
|
void theory_array_bapa::init_model() { m_imp->init_model(); }
|
|
|
|
bool theory_array_bapa::should_research(expr_ref_vector & unsat_core) { return m_imp->should_research(unsat_core); }
|
|
|
|
void theory_array_bapa::add_theory_assumptions(expr_ref_vector & assumptions) { m_imp->add_theory_assumptions(assumptions); }
|
|
|
|
}
|