mirror of
https://github.com/Z3Prover/z3
synced 2025-06-15 02:16:16 +00:00
400 lines
12 KiB
C++
400 lines
12 KiB
C++
/*++
|
|
Copyright (c) 2006 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
proto_model.cpp
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2007-03-08.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/ast_ll_pp.h"
|
|
#include "ast/well_sorted.h"
|
|
#include "ast/array_decl_plugin.h"
|
|
#include "ast/used_symbols.h"
|
|
#include "ast/for_each_expr.h"
|
|
#include "ast/rewriter/var_subst.h"
|
|
#include "model/model_params.hpp"
|
|
#include "model/model_v2_pp.h"
|
|
#include "smt/proto_model/proto_model.h"
|
|
|
|
|
|
proto_model::proto_model(ast_manager & m, params_ref const & p):
|
|
model_core(m),
|
|
m_eval(*this),
|
|
m_rewrite(m) {
|
|
register_factory(alloc(basic_factory, m, m.get_num_asts()));
|
|
m_user_sort_factory = alloc(user_sort_factory, m);
|
|
register_factory(m_user_sort_factory);
|
|
m_model_partial = model_params(p).partial();
|
|
}
|
|
|
|
void proto_model::register_aux_decl(func_decl * d, func_interp * fi) {
|
|
model_core::register_decl(d, fi);
|
|
m_aux_decls.insert(d);
|
|
}
|
|
|
|
void proto_model::register_aux_decl(func_decl * d) {
|
|
m_aux_decls.insert(d);
|
|
}
|
|
|
|
/**
|
|
\brief Set new_fi as the new interpretation for f.
|
|
If f_aux != 0, then assign the old interpretation of f to f_aux.
|
|
If f_aux == 0, then delete the old interpretation of f.
|
|
|
|
f_aux is marked as a auxiliary declaration.
|
|
*/
|
|
void proto_model::reregister_decl(func_decl * f, func_interp * new_fi, func_decl * f_aux) {
|
|
func_interp * fi = get_func_interp(f);
|
|
if (fi == nullptr) {
|
|
register_decl(f, new_fi);
|
|
}
|
|
else {
|
|
if (f_aux != nullptr) {
|
|
register_decl(f_aux, fi);
|
|
m_aux_decls.insert(f_aux);
|
|
}
|
|
else {
|
|
dealloc(fi);
|
|
}
|
|
m_finterp.insert(f, new_fi);
|
|
}
|
|
}
|
|
|
|
expr * proto_model::mk_some_interp_for(func_decl * d) {
|
|
SASSERT(!has_interpretation(d));
|
|
expr * r = get_some_value(d->get_range()); // if t is a function, then it will be the constant function.
|
|
if (d->get_arity() == 0) {
|
|
register_decl(d, r);
|
|
}
|
|
else {
|
|
func_interp * new_fi = alloc(func_interp, m, d->get_arity());
|
|
new_fi->set_else(r);
|
|
register_decl(d, new_fi);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
bool proto_model::eval(expr * e, expr_ref & result, bool model_completion) {
|
|
m_eval.set_model_completion(model_completion);
|
|
m_eval.set_expand_array_equalities(false);
|
|
TRACE("model_evaluator", model_v2_pp(tout, *this, true););
|
|
try {
|
|
m_eval(e, result);
|
|
return true;
|
|
}
|
|
catch (model_evaluator_exception & ex) {
|
|
(void)ex;
|
|
TRACE("model_evaluator", tout << ex.msg() << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
\brief Evaluate the expression e in the current model, and store the result in \c result.
|
|
It returns \c true if succeeded, and false otherwise. If the evaluation fails,
|
|
then r contains a term that is simplified as much as possible using the interpretations
|
|
available in the model.
|
|
|
|
When model_completion == true, if the model does not assign an interpretation to a
|
|
declaration it will build one for it. Moreover, partial functions will also be completed.
|
|
So, if model_completion == true, the evaluator never fails if it doesn't contain quantifiers.
|
|
*/
|
|
|
|
|
|
/**
|
|
\brief Replace uninterpreted constants occurring in fi->get_else()
|
|
by their interpretations.
|
|
*/
|
|
void proto_model::cleanup_func_interp(expr_ref_vector& trail, func_interp * fi, func_decl_set & found_aux_fs) {
|
|
if (!fi->is_partial()) {
|
|
expr * fi_else = fi->get_else();
|
|
fi->set_else(cleanup_expr(trail, fi_else, found_aux_fs));
|
|
}
|
|
}
|
|
|
|
expr* proto_model::cleanup_expr(expr_ref_vector& trail, expr* fi_else, func_decl_set& found_aux_fs) {
|
|
TRACE("model_bug", tout << "cleaning up:\n" << mk_pp(fi_else, m) << "\n";);
|
|
trail.reset();
|
|
obj_map<expr, expr*> cache;
|
|
ptr_buffer<expr, 128> todo;
|
|
ptr_buffer<expr> args;
|
|
todo.push_back(fi_else);
|
|
expr * a;
|
|
expr_ref new_t(m);
|
|
|
|
while (!todo.empty()) {
|
|
a = todo.back();
|
|
if (is_uninterp_const(a)) {
|
|
todo.pop_back();
|
|
func_decl * a_decl = to_app(a)->get_decl();
|
|
expr * ai = get_const_interp(a_decl);
|
|
if (ai == nullptr) {
|
|
ai = get_some_value(a_decl->get_range());
|
|
register_decl(a_decl, ai);
|
|
}
|
|
cache.insert(a, ai);
|
|
}
|
|
else {
|
|
switch(a->get_kind()) {
|
|
case AST_APP: {
|
|
app * t = to_app(a);
|
|
bool visited = true;
|
|
args.reset();
|
|
for (expr* t_arg : *t) {
|
|
expr * arg = nullptr;
|
|
if (!cache.find(t_arg, arg)) {
|
|
visited = false;
|
|
todo.push_back(t_arg);
|
|
}
|
|
else {
|
|
args.push_back(arg);
|
|
}
|
|
}
|
|
if (!visited) {
|
|
continue;
|
|
}
|
|
func_decl * f = t->get_decl();
|
|
if (m_aux_decls.contains(f)) {
|
|
TRACE("model_bug", tout << f->get_name() << "\n";);
|
|
found_aux_fs.insert(f);
|
|
}
|
|
new_t = m_rewrite.mk_app(f, args.size(), args.data());
|
|
if (t != new_t.get())
|
|
trail.push_back(new_t);
|
|
todo.pop_back();
|
|
cache.insert(t, new_t);
|
|
break;
|
|
}
|
|
default:
|
|
SASSERT(a != nullptr);
|
|
cache.insert(a, a);
|
|
todo.pop_back();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
VERIFY(cache.find(fi_else, a));
|
|
|
|
return a;
|
|
}
|
|
|
|
void proto_model::remove_aux_decls_not_in_set(ptr_vector<func_decl> & decls, func_decl_set const & s) {
|
|
unsigned j = 0;
|
|
for (func_decl* f : decls) {
|
|
if (!m_aux_decls.contains(f) || s.contains(f)) {
|
|
decls[j++] = f;
|
|
}
|
|
}
|
|
decls.shrink(j);
|
|
}
|
|
|
|
|
|
/**
|
|
\brief Replace uninterpreted constants occurring in the func_interp's get_else()
|
|
by their interpretations.
|
|
*/
|
|
void proto_model::cleanup() {
|
|
TRACE("model_bug", model_v2_pp(tout, *this););
|
|
func_decl_set found_aux_fs;
|
|
expr_ref_vector trail(m);
|
|
ptr_buffer<func_interp> finterps;
|
|
for (auto const& kv : m_finterp)
|
|
finterps.push_back(kv.m_value);
|
|
for (auto* fi : finterps)
|
|
cleanup_func_interp(trail, fi, found_aux_fs);
|
|
|
|
for (unsigned i = 0; i < m_const_decls.size(); ++i) {
|
|
func_decl* d = m_const_decls[i];
|
|
expr* e = m_interp[d].second;
|
|
expr* r = cleanup_expr(trail, e, found_aux_fs);
|
|
if (e != r) {
|
|
register_decl(d, r);
|
|
}
|
|
}
|
|
// TRACE("model_bug", model_v2_pp(tout, *this););
|
|
// remove auxiliary declarations that are not used.
|
|
if (found_aux_fs.size() != m_aux_decls.size()) {
|
|
remove_aux_decls_not_in_set(m_decls, found_aux_fs);
|
|
remove_aux_decls_not_in_set(m_func_decls, found_aux_fs);
|
|
|
|
for (func_decl* faux : m_aux_decls) {
|
|
if (!found_aux_fs.contains(faux)) {
|
|
TRACE("cleanup_bug", tout << "eliminating " << faux->get_name() << " " << faux->get_ref_count() << "\n";);
|
|
unregister_decl(faux);
|
|
}
|
|
}
|
|
m_aux_decls.swap(found_aux_fs);
|
|
}
|
|
TRACE("model_bug", model_v2_pp(tout, *this););
|
|
}
|
|
|
|
value_factory * proto_model::get_factory(family_id fid) {
|
|
return m_factories.get_plugin(fid);
|
|
}
|
|
|
|
void proto_model::freeze_universe(sort * s) {
|
|
SASSERT(m.is_uninterp(s));
|
|
m_user_sort_factory->freeze_universe(s);
|
|
}
|
|
|
|
/**
|
|
\brief Return the known universe of an uninterpreted sort.
|
|
*/
|
|
obj_hashtable<expr> const & proto_model::get_known_universe(sort * s) const {
|
|
return m_user_sort_factory->get_known_universe(s);
|
|
}
|
|
|
|
ptr_vector<expr> const & proto_model::get_universe(sort * s) const {
|
|
ptr_vector<expr> & tmp = const_cast<proto_model*>(this)->m_tmp;
|
|
tmp.reset();
|
|
obj_hashtable<expr> const & u = get_known_universe(s);
|
|
for (expr * e : u) {
|
|
tmp.push_back(e);
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
unsigned proto_model::get_num_uninterpreted_sorts() const {
|
|
return m_user_sort_factory->get_num_sorts();
|
|
}
|
|
|
|
sort * proto_model::get_uninterpreted_sort(unsigned idx) const {
|
|
SASSERT(idx < get_num_uninterpreted_sorts());
|
|
return m_user_sort_factory->get_sort(idx);
|
|
}
|
|
|
|
/**
|
|
\brief Return true if the given sort is uninterpreted and has a finite interpretation
|
|
in the model.
|
|
*/
|
|
bool proto_model::is_finite(sort * s) const {
|
|
return m.is_uninterp(s) && m_user_sort_factory->is_finite(s);
|
|
}
|
|
|
|
expr * proto_model::get_some_value(sort * s) {
|
|
if (m.is_uninterp(s))
|
|
return m_user_sort_factory->get_some_value(s);
|
|
else if (value_factory * f = get_factory(s->get_family_id()))
|
|
return f->get_some_value(s);
|
|
else
|
|
// there is no factory for the family id, then assume s is uninterpreted.
|
|
return m_user_sort_factory->get_some_value(s);
|
|
}
|
|
|
|
bool proto_model::get_some_values(sort * s, expr_ref & v1, expr_ref & v2) {
|
|
if (m.is_uninterp(s))
|
|
return m_user_sort_factory->get_some_values(s, v1, v2);
|
|
else if (value_factory * f = get_factory(s->get_family_id()))
|
|
return f->get_some_values(s, v1, v2);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
expr * proto_model::get_fresh_value(sort * s) {
|
|
if (m.is_uninterp(s))
|
|
return m_user_sort_factory->get_fresh_value(s);
|
|
else if (value_factory * f = get_factory(s->get_family_id()))
|
|
return f->get_fresh_value(s);
|
|
else
|
|
// Use user_sort_factory if the theory has no support for model construnction.
|
|
// This is needed when dummy theories are used for arithmetic or arrays.
|
|
return m_user_sort_factory->get_fresh_value(s);
|
|
}
|
|
|
|
void proto_model::register_value(expr * n) {
|
|
sort * s = n->get_sort();
|
|
if (m.is_uninterp(s)) {
|
|
m_user_sort_factory->register_value(n);
|
|
}
|
|
else {
|
|
family_id fid = s->get_family_id();
|
|
value_factory * f = get_factory(fid);
|
|
if (f)
|
|
f->register_value(n);
|
|
}
|
|
}
|
|
|
|
void proto_model::compress() {
|
|
for (func_decl* f : m_func_decls) {
|
|
func_interp * fi = get_func_interp(f);
|
|
SASSERT(fi != nullptr);
|
|
fi->compress();
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Complete the interpretation fi of f if it is partial.
|
|
If f does not have an interpretation in the given model, then this is a noop.
|
|
*/
|
|
void proto_model::complete_partial_func(func_decl * f, bool use_fresh) {
|
|
func_interp * fi = get_func_interp(f);
|
|
if (fi && fi->is_partial()) {
|
|
expr * else_value;
|
|
if (use_fresh) {
|
|
else_value = get_fresh_value(f->get_range());
|
|
}
|
|
else {
|
|
else_value = fi->get_max_occ_result();
|
|
}
|
|
if (else_value == nullptr)
|
|
else_value = get_some_value(f->get_range());
|
|
fi->set_else(else_value);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Set the (else) field of function interpretations...
|
|
*/
|
|
void proto_model::complete_partial_funcs(bool use_fresh) {
|
|
if (m_model_partial)
|
|
return;
|
|
|
|
// m_func_decls may be "expanded" when we invoke get_some_value.
|
|
// So, we must not use iterators to traverse it.
|
|
for (unsigned i = 0; i < m_func_decls.size(); ++i) {
|
|
complete_partial_func(m_func_decls.get(i), use_fresh);
|
|
}
|
|
}
|
|
|
|
model * proto_model::mk_model() {
|
|
TRACE("proto_model", model_v2_pp(tout << "mk_model\n", *this););
|
|
model * mdl = alloc(model, m);
|
|
|
|
for (auto const& kv : m_interp) {
|
|
mdl->register_decl(kv.m_key, kv.m_value.second);
|
|
}
|
|
|
|
for (auto const& kv : m_finterp) {
|
|
mdl->register_decl(kv.m_key, kv.m_value);
|
|
m.dec_ref(kv.m_key);
|
|
}
|
|
|
|
m_finterp.reset(); // m took the ownership of the func_interp's
|
|
|
|
unsigned sz = get_num_uninterpreted_sorts();
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
sort * s = get_uninterpreted_sort(i);
|
|
TRACE("proto_model", tout << "copying uninterpreted sorts...\n" << mk_pp(s, m) << "\n";);
|
|
ptr_vector<expr> const& buf = get_universe(s);
|
|
mdl->register_usort(s, buf.size(), buf.data());
|
|
}
|
|
|
|
return mdl;
|
|
}
|
|
|