3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-09-02 08:10:43 +00:00
z3/src/muz/spacer/spacer_antiunify.cpp
Nikolaj Bjorner 0c2e3c0894 fixes to clause proof tracking
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2018-06-14 16:08:50 -07:00

422 lines
12 KiB
C++

/*++
Copyright (c) 2017 Arie Gurfinkel
Module Name:
spacer_antiunify.cpp
Abstract:
Antiunification utilities
Author:
Bernhard Gleiss
Arie Gurfinkel
Revision History:
--*/
#include"muz/spacer/spacer_antiunify.h"
#include"ast/ast.h"
#include"ast/rewriter/rewriter.h"
#include"ast/rewriter/rewriter_def.h"
#include"ast/arith_decl_plugin.h"
#include"ast/ast_util.h"
#include"ast/expr_abstract.h"
namespace spacer {
// Abstracts numeric values by variables
struct var_abs_rewriter : public default_rewriter_cfg {
ast_manager &m;
arith_util m_util;
ast_mark m_seen;
ast_mark m_has_num;
unsigned m_var_index;
expr_ref_vector m_pinned;
obj_map<expr, expr*>& m_substitution;
ptr_vector<expr> m_stack;
var_abs_rewriter (ast_manager &manager, obj_map<expr, expr*>& substitution,
unsigned k = 0) :
m(manager), m_util(m), m_var_index(k),
m_pinned(m), m_substitution(substitution) {}
void reset(unsigned k = 0) {
m_pinned.reset();
m_var_index = k;
}
bool pre_visit(expr * t) {
bool r = (!m_seen.is_marked(t) || m_has_num.is_marked(t));
// only unify if convex closure will not contain non-linear multiplication
if (m_util.is_mul(t))
{
bool contains_const_child = false;
app* a = to_app(t);
for (expr * arg : *a) {
if (m_util.is_numeral(arg)) {
contains_const_child = true;
}
}
if (!contains_const_child) {r = false;}
}
if (r) {m_stack.push_back (t);}
return r;
}
br_status reduce_app (func_decl * f, unsigned num, expr * const * args,
expr_ref & result, proof_ref & result_pr) {
expr *s;
s = m_stack.back();
m_stack.pop_back();
if (is_app(s)) {
app *a = to_app(s);
for (unsigned i=0, sz = a->get_num_args(); i < sz; ++i) {
if (m_has_num.is_marked(a->get_arg(i))) {
m_has_num.mark(a,true);
return BR_FAILED;
}
}
}
return BR_FAILED;
}
bool cache_all_results() const { return false; }
bool cache_results() const { return false; }
bool get_subst(expr * s, expr * & t, proof * & t_pr) {
if (m_util.is_numeral(s)) {
t = m.mk_var(m_var_index++, m.get_sort(s));
m_substitution.insert(t, s);
m_pinned.push_back(t);
m_has_num.mark(s, true);
m_seen.mark(t, true);
return true;
}
return false;
}
};
anti_unifier::anti_unifier(ast_manager &manager) : m(manager), m_pinned(m) {}
void anti_unifier::reset() {
m_subs.reset();
m_cache.reset();
m_todo.reset();
m_pinned.reset();
}
void anti_unifier::operator()(expr *e1, expr *e2, expr_ref &res,
substitution &s1, substitution &s2) {
reset();
if (e1 == e2) {res = e1; s1.reset(); s2.reset(); return;}
m_todo.push_back(expr_pair(e1, e2));
while (!m_todo.empty()) {
const expr_pair &p = m_todo.back();
SASSERT(is_app(p.first));
SASSERT(is_app(p.second));
app * n1 = to_app(p.first);
app * n2 = to_app(p.second);
unsigned num_arg1 = n1->get_num_args();
unsigned num_arg2 = n2->get_num_args();
if (n1->get_decl() != n2->get_decl() || num_arg1 != num_arg2) {
expr_ref v(m);
v = m.mk_var(m_subs.size(), get_sort(n1));
m_pinned.push_back(v);
m_subs.push_back(expr_pair(n1, n2));
m_cache.insert(n1, n2, v);
}
else {
expr *tmp;
unsigned todo_sz = m_todo.size();
ptr_buffer<expr> kids;
for (unsigned i = 0; i < num_arg1; ++i) {
expr *arg1 = n1->get_arg(i);
expr *arg2 = n2->get_arg(i);
if (arg1 == arg2) {kids.push_back(arg1);}
else if (m_cache.find(arg1, arg2, tmp)) {kids.push_back(tmp);}
else {m_todo.push_back(expr_pair(arg1, arg2));}
}
if (m_todo.size() > todo_sz) {continue;}
expr_ref u(m);
u = m.mk_app(n1->get_decl(), kids.size(), kids.c_ptr());
m_pinned.push_back(u);
m_cache.insert(n1, n2, u);
}
}
expr *r;
VERIFY(m_cache.find(e1, e2, r));
res = r;
// create substitutions
s1.reserve(2, m_subs.size());
s2.reserve(2, m_subs.size());
for (unsigned i = 0, sz = m_subs.size(); i < sz; ++i) {
expr_pair p = m_subs.get(i);
s1.insert(i, 0, expr_offset(p.first, 1));
s2.insert(i, 0, expr_offset(p.second, 1));
}
}
class ncc_less_than_key
{
public:
ncc_less_than_key(arith_util& util) : m_util(util) {}
bool operator() (const expr*& e1, const expr*& e2) {
rational val1;
rational val2;
if (m_util.is_numeral(e1, val1) && m_util.is_numeral(e2, val2))
{
return val1 < val2;
}
else
{
SASSERT(false);
return false;
}
}
arith_util m_util;
};
/*
* if there is a single interval which exactly captures each of the
* substitutions, return the corresponding closure, otherwise do
* nothing
*/
bool naive_convex_closure::compute_closure(anti_unifier& au, ast_manager& m,
expr_ref& result) {
NOT_IMPLEMENTED_YET();
#if 0
arith_util util(m);
SASSERT(au.get_num_substitutions() > 0);
if (au.get_substitution(0).size() == 0) {
result = au.get_generalization();
return true;
}
// check that all substitutions have the same size
for (unsigned i=0, sz = au.get_num_substitutions(); i+1 < sz; ++i) {
if (au.get_substitution(i).size() != au.get_substitution(i+1).size()) {
return false;
}
}
// for each substitution entry
bool is_first_key = true;
unsigned lower_bound = 0;
unsigned upper_bound = 0;
for (const auto& pair : au.get_substitution(0)) {
// construct vector
expr* key = &pair.get_key();
vector<unsigned> entries;
rational val;
for (unsigned i=0, sz = au.get_num_substitutions(); i < sz; ++i)
{
if (util.is_numeral(au.get_substitution(i)[key], val) &&
val.is_unsigned()) {
entries.push_back(val.get_unsigned());
}
else {
return false;
}
}
// check whether vector represents interval
unsigned current_lower_bound = 0;
unsigned current_upper_bound = 0;
// if vector represents interval
if (get_range(entries, current_lower_bound, current_upper_bound)) {
// if interval is the same as previous interval
if (is_first_key) {
is_first_key = false;
lower_bound = current_lower_bound;
upper_bound = current_upper_bound;
}
else {
if (current_lower_bound != lower_bound ||
current_upper_bound != upper_bound) {
return false;
}
}
}
// otherwise we don't do a convex closure
else {
return false;
}
}
// we finally know that we can express the substitutions using a
// single interval, so build the expression 1. construct const
expr_ref const_ref(m.mk_const(symbol("scti!0"), util.mk_int()), m);
// 2. construct body with const
expr_ref lit1(util.mk_le(util.mk_int(lower_bound), const_ref), m);
expr_ref lit2(util.mk_le(const_ref, util.mk_int(upper_bound)), m);
expr_ref lit3(m);
substitute_vars_by_const(m, au.get_generalization(), const_ref, lit3);
expr_ref_vector args(m);
args.push_back(lit1);
args.push_back(lit2);
args.push_back(lit3);
expr_ref body_with_consts = mk_and(args);
// 3. replace const by var
ptr_vector<expr> vars;
vars.push_back(const_ref);
expr_ref body(m);
expr_abstract(m, 0, vars.size(), (expr*const*)vars.c_ptr(), body_with_consts, body);
// 4. introduce quantifier
ptr_vector<sort> sorts;
sorts.push_back(util.mk_int());
svector<symbol> names;
names.push_back(symbol("scti!0"));
result = expr_ref(m.mk_exists(vars.size(), sorts.c_ptr(), names.c_ptr(), body),m);
return true;
#endif
}
bool naive_convex_closure::get_range(vector<unsigned int>& v,
unsigned int& lower_bound, unsigned int& upper_bound)
{
// sort substitutions
std::sort(v.begin(), v.end());
// check that numbers are consecutive
for (unsigned i=0; i+1 < v.size(); ++i) {
if (v[i] + 1 != v[i+1]) {
return false;
}
}
SASSERT(v.size() > 0);
lower_bound = v[0];
upper_bound = v.back();
return true;
}
struct subs_rewriter_cfg : public default_rewriter_cfg {
ast_manager &m;
expr_ref m_c;
subs_rewriter_cfg (ast_manager &manager, expr* c) : m(manager), m_c(c, m) {}
bool reduce_var(var * t, expr_ref & result, proof_ref & result_pr) {
result = m_c;
result_pr = nullptr;
return true;
}
};
void naive_convex_closure::substitute_vars_by_const(ast_manager& m, expr* t,
expr* c, expr_ref& res) {
subs_rewriter_cfg subs_cfg(m, c);
rewriter_tpl<subs_rewriter_cfg> subs_rw (m, false, subs_cfg);
subs_rw (t, res);
}
/// Construct a pattern by abstracting all numbers by variables
struct mk_num_pat_rewriter : public default_rewriter_cfg {
ast_manager &m;
arith_util m_arith;
// -- mark already seen expressions
ast_mark m_seen;
// -- true if the expression is known to have a number as a sub-expression
ast_mark m_has_num;
// -- expressions created during the transformation
expr_ref_vector m_pinned;
// -- map from introduced variables to expressions they replace
app_ref_vector &m_subs;
// -- stack of expressions being processed to have access to expressions
// -- before rewriting
ptr_buffer<expr> m_stack;
mk_num_pat_rewriter (ast_manager &manager, app_ref_vector& subs) :
m(manager), m_arith(m), m_pinned(m), m_subs(subs) {}
bool pre_visit(expr * t) {
// -- don't touch multiplication
if (m_arith.is_mul(t)) return false;
bool r = (!m_seen.is_marked(t) || m_has_num.is_marked(t));
if (r) {m_stack.push_back (t);}
return r;
}
br_status reduce_app (func_decl * f, unsigned num, expr * const * args,
expr_ref & result, proof_ref & result_pr) {
expr *s;
s = m_stack.back();
m_stack.pop_back();
if (is_app(s)) {
app *a = to_app(s);
for (unsigned i = 0, sz = a->get_num_args(); i < sz; ++i) {
if (m_has_num.is_marked(a->get_arg(i))) {
m_has_num.mark(a, true);
break;
}
}
}
return BR_FAILED;
}
bool cache_all_results() const { return false; }
bool cache_results() const { return false; }
bool get_subst(expr * s, expr * & t, proof * & t_pr) {
if (m_arith.is_numeral(s)) {
t = m.mk_var(m_subs.size(), m.get_sort(s));
m_pinned.push_back(t);
m_subs.push_back(to_app(s));
m_has_num.mark(t, true);
m_seen.mark(t, true);
return true;
}
return false;
}
};
void mk_num_pat(expr *e, expr_ref &result, app_ref_vector &subs) {
SASSERT(subs.empty());
mk_num_pat_rewriter rw_cfg(result.m(), subs);
rewriter_tpl<mk_num_pat_rewriter> rw(result.m(), false, rw_cfg);
rw(e, result);
}
}
template class rewriter_tpl<spacer::var_abs_rewriter>;
template class rewriter_tpl<spacer::subs_rewriter_cfg>;
template class rewriter_tpl<spacer::mk_num_pat_rewriter>;