3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 20:05:51 +00:00
z3/src/smt/params/theory_str_params.h
2018-06-25 19:44:46 +08:00

145 lines
4.7 KiB
C

/*++
Module Name:
theory_str_params.h
Abstract:
Parameters for string theory plugin
Author:
Murphy Berzish (mtrberzi) 2016-12-13
Revision History:
--*/
#ifndef THEORY_STR_PARAMS_H
#define THEORY_STR_PARAMS_H
#include "util/params.h"
struct theory_str_params {
/*
* If AssertStrongerArrangements is set to true,
* the implications that would normally be asserted during arrangement generation
* will instead be asserted as equivalences.
* This is a stronger version of the standard axiom.
* The Z3str2 axioms can be simulated by setting this to false.
*/
bool m_StrongArrangements;
/*
* If AggressiveLengthTesting is true, we manipulate the phase of length tester equalities
* to prioritize trying concrete length options over choosing the "more" option.
*/
bool m_AggressiveLengthTesting;
/*
* Similarly, if AggressiveValueTesting is true, we manipulate the phase of value tester equalities
* to prioritize trying concrete value options over choosing the "more" option.
*/
bool m_AggressiveValueTesting;
/*
* If AggressiveUnrollTesting is true, we manipulate the phase of regex unroll tester equalities
* to prioritize trying concrete unroll counts over choosing the "more" option.
*/
bool m_AggressiveUnrollTesting;
/*
* If UseFastLengthTesterCache is set to true,
* length tester terms will not be generated from scratch each time they are needed,
* but will be saved in a map and looked up.
*/
bool m_UseFastLengthTesterCache;
/*
* If UseFastValueTesterCache is set to true,
* value tester terms will not be generated from scratch each time they are needed,
* but will be saved in a map and looked up.
*/
bool m_UseFastValueTesterCache;
/*
* If StringConstantCache is set to true,
* all string constants in theory_str generated from anywhere will be cached and saved.
*/
bool m_StringConstantCache;
/*
* If FiniteOverlapModels is set to true,
* arrangements that result in overlapping variables will generate a small number of models
* to test instead of completely giving up on the case.
*/
bool m_FiniteOverlapModels;
bool m_UseBinarySearch;
unsigned m_BinarySearchInitialUpperBound;
double m_OverlapTheoryAwarePriority;
/*
* If RegexAutomata is set to true,
* Z3str3 will use automata-based methods to reason about
* regular expression constraints.
*/
bool m_RegexAutomata;
/*
* RegexAutomata_DifficultyThreshold is the lowest difficulty above which Z3str3
* will not eagerly construct an automaton for a regular expression term.
*/
unsigned m_RegexAutomata_DifficultyThreshold;
/*
* RegexAutomata_IntersectionDifficultyThreshold is the lowest difficulty above which Z3str3
* will not eagerly intersect automata to check unsatisfiability.
*/
unsigned m_RegexAutomata_IntersectionDifficultyThreshold;
/*
* RegexAutomata_FailedAutomatonThreshold is the number of failed attempts to build an automaton
* after which a full automaton (i.e. with no length information) will be built regardless of difficulty.
*/
unsigned m_RegexAutomata_FailedAutomatonThreshold;
/*
* RegexAutomaton_FailedIntersectionThreshold is the number of failed attempts to perform automaton
* intersection after which intersection will always be performed regardless of difficulty.
*/
unsigned m_RegexAutomata_FailedIntersectionThreshold;
/*
* RegexAutomaton_LengthAttemptThreshold is the number of attempts to satisfy length/path constraints
* before which we begin checking unsatisfiability of a regex term.
*/
unsigned m_RegexAutomata_LengthAttemptThreshold;
theory_str_params(params_ref const & p = params_ref()):
m_StrongArrangements(true),
m_AggressiveLengthTesting(false),
m_AggressiveValueTesting(false),
m_AggressiveUnrollTesting(true),
m_UseFastLengthTesterCache(false),
m_UseFastValueTesterCache(true),
m_StringConstantCache(true),
m_FiniteOverlapModels(false),
m_UseBinarySearch(false),
m_BinarySearchInitialUpperBound(64),
m_OverlapTheoryAwarePriority(-0.1),
m_RegexAutomata(true),
m_RegexAutomata_DifficultyThreshold(1000),
m_RegexAutomata_IntersectionDifficultyThreshold(1000),
m_RegexAutomata_FailedAutomatonThreshold(10),
m_RegexAutomata_FailedIntersectionThreshold(10),
m_RegexAutomata_LengthAttemptThreshold(10)
{
updt_params(p);
}
void updt_params(params_ref const & p);
};
#endif /* THEORY_STR_PARAMS_H */