3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 19:53:34 +00:00
z3/lib/theory_arith_params.h
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

159 lines
4.9 KiB
C

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
theory_arith_params.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-05-06.
Revision History:
--*/
#ifndef _THEORY_ARITH_PARAMS_H_
#define _THEORY_ARITH_PARAMS_H_
#include"ini_file.h"
enum arith_solver_id {
AS_NO_ARITH,
AS_DIFF_LOGIC,
AS_ARITH,
AS_DENSE_DIFF_LOGIC
};
enum bound_prop_mode {
BP_NONE,
BP_SIMPLE, // only used for implying literals
BP_REFINE // refine known bounds
};
enum arith_prop_strategy {
ARITH_PROP_AGILITY,
ARITH_PROP_PROPORTIONAL
};
enum arith_pivot_strategy {
ARITH_PIVOT_SMALLEST,
ARITH_PIVOT_GREATEST_ERROR,
ARITH_PIVOT_LEAST_ERROR
};
struct theory_arith_params {
arith_solver_id m_arith_mode;
bool m_arith_auto_config_simplex; //!< force simplex solver in auto_config
unsigned m_arith_blands_rule_threshold;
bool m_arith_propagate_eqs;
bound_prop_mode m_arith_bound_prop;
bool m_arith_stronger_lemmas;
bool m_arith_skip_rows_with_big_coeffs;
unsigned m_arith_max_lemma_size;
unsigned m_arith_small_lemma_size;
bool m_arith_reflect;
bool m_arith_ignore_int;
unsigned m_arith_lazy_pivoting_lvl;
unsigned m_arith_random_seed;
bool m_arith_random_initial_value;
int m_arith_random_lower;
int m_arith_random_upper;
bool m_arith_adaptive;
double m_arith_adaptive_assertion_threshold;
double m_arith_adaptive_propagation_threshold;
bool m_arith_dump_lemmas;
bool m_arith_eager_eq_axioms;
unsigned m_arith_branch_cut_ratio;
bool m_arith_int_eq_branching;
bool m_arith_enum_const_mod;
bool m_arith_gcd_test;
bool m_arith_eager_gcd;
bool m_arith_adaptive_gcd;
unsigned m_arith_propagation_threshold;
arith_pivot_strategy m_arith_pivot_strategy;
// used in diff-logic
bool m_arith_add_binary_bounds;
arith_prop_strategy m_arith_propagation_strategy;
// used arith_eq_adapter
bool m_arith_eq_bounds;
bool m_arith_lazy_adapter;
// performance debugging flags
bool m_arith_fixnum;
bool m_arith_int_only;
// non linear support
bool m_nl_arith;
bool m_nl_arith_gb;
unsigned m_nl_arith_gb_threshold;
bool m_nl_arith_gb_eqs;
bool m_nl_arith_gb_perturbate;
unsigned m_nl_arith_max_degree;
bool m_nl_arith_branching;
unsigned m_nl_arith_rounds;
// euclidean solver for tighting bounds
bool m_arith_euclidean_solver;
theory_arith_params():
m_arith_mode(AS_ARITH),
m_arith_auto_config_simplex(false),
m_arith_blands_rule_threshold(1000),
m_arith_propagate_eqs(true),
m_arith_bound_prop(BP_REFINE),
m_arith_stronger_lemmas(true),
m_arith_skip_rows_with_big_coeffs(true),
m_arith_max_lemma_size(128),
m_arith_small_lemma_size(16),
m_arith_reflect(true),
m_arith_ignore_int(false),
m_arith_lazy_pivoting_lvl(0),
m_arith_random_seed(0),
m_arith_random_initial_value(false),
m_arith_random_lower(-1000),
m_arith_random_upper(1000),
m_arith_adaptive(false),
m_arith_adaptive_assertion_threshold(0.2),
m_arith_adaptive_propagation_threshold(0.4),
m_arith_dump_lemmas(false),
m_arith_eager_eq_axioms(true),
m_arith_branch_cut_ratio(2),
m_arith_int_eq_branching(false),
m_arith_enum_const_mod(false),
m_arith_gcd_test(true),
m_arith_eager_gcd(false),
m_arith_adaptive_gcd(false),
m_arith_propagation_threshold(UINT_MAX),
m_arith_pivot_strategy(ARITH_PIVOT_SMALLEST),
m_arith_add_binary_bounds(false),
m_arith_propagation_strategy(ARITH_PROP_PROPORTIONAL),
m_arith_eq_bounds(false),
m_arith_lazy_adapter(false),
m_arith_fixnum(false),
m_arith_int_only(false),
m_nl_arith(true),
m_nl_arith_gb(true),
m_nl_arith_gb_threshold(512),
m_nl_arith_gb_eqs(false),
m_nl_arith_gb_perturbate(true),
m_nl_arith_max_degree(6),
m_nl_arith_branching(true),
m_nl_arith_rounds(1024),
m_arith_euclidean_solver(false) {
}
void register_params(ini_params & p);
};
#endif /* _THEORY_ARITH_PARAMS_H_ */