3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 11:43:36 +00:00
z3/lib/smt_context_inv.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

404 lines
17 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
smt_context_inv.cpp
Abstract:
SMT logical contexts: invariant
Author:
Leonardo de Moura (leonardo) 2008-02-21.
Revision History:
--*/
#include"smt_context.h"
#include"ast_pp.h"
#include"ast_ll_pp.h"
#include"ast_smt2_pp.h"
namespace smt {
#ifdef Z3DEBUG
bool context::is_watching_clause(literal l, clause const * cls) const {
watch_list & wl = const_cast<watch_list &>(m_watches[l.index()]);
return wl.find_clause(cls) != wl.end_clause();
}
bool context::check_clause(clause const * cls) const {
SASSERT(is_watching_clause(~cls->get_literal(0), cls));
SASSERT(is_watching_clause(~cls->get_literal(1), cls));
if (lit_occs_enabled()) {
unsigned num_lits = cls->get_num_literals();
for (unsigned i = 0; i < num_lits; i++) {
literal l = cls->get_literal(i);
SASSERT(m_lit_occs[l.index()].contains(const_cast<clause*>(cls)));
}
}
return true;
}
bool context::check_clauses(clause_vector const & v) const {
clause_vector::const_iterator it = v.begin();
clause_vector::const_iterator end = v.end();
for (; it != end; ++it) {
clause * cls = *it;
if (!cls->deleted())
check_clause(cls);
}
return true;
}
bool context::check_watch_list(literal l) const {
watch_list & wl = const_cast<watch_list &>(m_watches[l.index()]);
l.neg();
watch_list::clause_iterator it = wl.begin_clause();
watch_list::clause_iterator end = wl.end_clause();
for (; it != end; ++it) {
clause * cls = *it;
TRACE("watch_list", tout << "l: "; display_literal(tout, l); tout << "\n";
display_clause(tout, cls); tout << "\n";);
SASSERT(l == cls->get_literal(0) || l == cls->get_literal(1));
}
return true;
}
bool context::check_watch_list(unsigned l_idx) const {
return check_watch_list(to_literal(l_idx));
}
bool context::check_bin_watch_lists() const {
if (binary_clause_opt_enabled()) {
vector<watch_list>::const_iterator it = m_watches.begin();
vector<watch_list>::const_iterator end = m_watches.end();
for (unsigned l_idx = 0; it != end; ++it, ++l_idx) {
literal l1 = to_literal(l_idx);
watch_list const & wl = *it;
literal const * it2 = wl.begin_literals();
literal const * end2 = wl.end_literals();
for (; it2 != end2; ++it2) {
literal l2 = *it2;
watch_list const & wl = m_watches[(~l2).index()];
SASSERT(wl.find_literal(~l1) != wl.end_literals());
}
}
}
return true;
}
bool context::check_lit_occs(literal l) const {
clause_set const & v = m_lit_occs[l.index()];
clause_set::iterator it = v.begin();
clause_set::iterator end = v.end();
for (; it != end; ++it) {
clause * cls = *it;
unsigned num = cls->get_num_literals();
unsigned i = 0;
for (; i < num; i++)
if (cls->get_literal(i) == l)
break;
CTRACE("lit_occs", !(i < num), tout << i << " " << num << "\n"; display_literal(tout, l); tout << "\n";
display_clause(tout, cls); tout << "\n";
tout << "l: " << l.index() << " cls: ";
for (unsigned j = 0; j < num; j++) {
tout << cls->get_literal(j).index() << " ";
}
tout << "\n";
display_clause_detail(tout, cls); tout << "\n";);
SASSERT(i < num);
}
return true;
}
bool context::check_lit_occs() const {
if (lit_occs_enabled()) {
unsigned num_lits = get_num_bool_vars() * 2;
for (unsigned l_idx = 0; l_idx < num_lits; ++l_idx) {
check_lit_occs(to_literal(l_idx));
}
}
return true;
}
bool context::check_enode(enode * n) const {
SASSERT(n->check_invariant());
bool is_true_eq = n->is_true_eq();
bool cg_inv =
n->get_num_args() == 0 ||
(!is_true_eq && (!n->is_cgc_enabled() || n->is_cgr() == (m_cg_table.contains_ptr(n)))) ||
(is_true_eq && !m_cg_table.contains_ptr(n));
CTRACE("check_enode", !cg_inv,
tout << "n: #" << n->get_owner_id() << ", m_cg: #" << n->m_cg->get_owner_id() << ", contains: " << m_cg_table.contains(n) << "\n"; display(tout););
SASSERT(cg_inv);
return true;
}
bool context::check_enodes() const {
ptr_vector<enode>::const_iterator it = m_enodes.begin();
ptr_vector<enode>::const_iterator end = m_enodes.end();
for (; it != end; ++it) {
check_enode(*it);
}
return true;
}
bool context::check_invariant() const {
check_lit_occs();
check_bin_watch_lists();
check_clauses(m_aux_clauses);
check_clauses(m_lemmas);
check_enodes();
SASSERT(m_cg_table.check_invariant());
return true;
}
bool context::check_missing_clause_propagation(clause_vector const & v) const {
clause_vector::const_iterator it = v.begin();
clause_vector::const_iterator end = v.end();
for (; it != end; ++it) {
CTRACE("missing_propagation", is_unit_clause(*it), display_clause_detail(tout, *it); tout << "\n";);
SASSERT(!is_unit_clause(*it));
}
return true;
}
bool context::check_missing_bin_clause_propagation() const {
if (binary_clause_opt_enabled()) {
SASSERT(m_watches.size() == m_assignment.size());
vector<watch_list>::const_iterator it = m_watches.begin();
vector<watch_list>::const_iterator end = m_watches.end();
for (unsigned l_idx = 0; it != end; ++it, ++l_idx) {
literal l = to_literal(l_idx);
watch_list const & wl = *it;
if (get_assignment(l) == l_true) {
literal const * it2 = wl.begin_literals();
literal const * end2 = wl.end_literals();
for (; it2 != end2; ++it2) {
literal l2 = *it2;
SASSERT(get_assignment(l2) == l_true);
}
}
}
}
return true;
}
bool context::check_missing_eq_propagation() const {
ptr_vector<enode>::const_iterator it = m_enodes.begin();
ptr_vector<enode>::const_iterator end = m_enodes.end();
for (; it != end; ++it) {
enode * n = *it;
SASSERT(!n->is_true_eq() || get_assignment(n) == l_true);
if (n->is_eq() && get_assignment(n) == l_true) {
SASSERT(n->is_true_eq());
}
}
return true;
}
bool context::check_missing_congruence() const {
ptr_vector<enode>::const_iterator it = m_enodes.begin();
ptr_vector<enode>::const_iterator end = m_enodes.end();
for (; it != end; ++it) {
enode * n = *it;
ptr_vector<enode>::const_iterator it2 = m_enodes.begin();
for (; it2 != end; ++it2) {
enode * n2 = *it2;
if (n->get_root() != n2->get_root()) {
if (n->is_true_eq() && n2->is_true_eq())
continue;
CTRACE("missing_propagation", congruent(n, n2),
tout << mk_pp(n->get_owner(), m_manager) << "\n" << mk_pp(n2->get_owner(), m_manager) << "\n";
display(tout););
SASSERT(!congruent(n, n2));
}
}
}
return true;
}
bool context::check_missing_bool_enode_propagation() const {
ptr_vector<enode>::const_iterator it = m_enodes.begin();
ptr_vector<enode>::const_iterator end = m_enodes.end();
for (; it != end; ++it) {
enode * n = *it;
if (m_manager.is_bool(n->get_owner()) && get_assignment(n) == l_undef) {
enode * first = n;
do {
CTRACE("missing_propagation", get_assignment(n) != l_undef,
tout << mk_pp(first->get_owner(), m_manager) << "\nassignment: " << get_assignment(first) << "\n"
<< mk_pp(n->get_owner(), m_manager) << "\nassignment: " << get_assignment(n) << "\n";);
SASSERT(get_assignment(n) == l_undef);
n = n->get_next();
}
while (n != first);
}
}
return true;
}
bool context::check_missing_propagation() const {
check_missing_clause_propagation(m_lemmas);
check_missing_clause_propagation(m_aux_clauses);
check_missing_bin_clause_propagation();
// check_missing_eq_propagation();
check_missing_congruence();
check_missing_bool_enode_propagation();
return true;
}
bool context::check_relevancy(expr_ref_vector const & v) const {
return m_relevancy_propagator->check_relevancy(v);
}
bool context::check_relevancy() const {
if (!relevancy())
return true;
check_relevancy(m_b_internalized_stack);
check_relevancy(m_e_internalized_stack);
unsigned sz = m_asserted_formulas.get_num_formulas();
for (unsigned i = 0; i < sz; i++) {
expr * n = m_asserted_formulas.get_formula(i);
if (m_manager.is_or(n)) {
CTRACE("relevancy_bug", !is_relevant(n), tout << "n: " << mk_ismt2_pp(n, m_manager) << "\n";);
SASSERT(is_relevant(n));
TRACE("check_relevancy", tout << "checking:\n" << mk_ll_pp(n, m_manager) << "\n";);
SASSERT(m_relevancy_propagator->check_relevancy_or(to_app(n), true));
}
else if (m_manager.is_not(n)) {
CTRACE("relevancy_bug", !is_relevant(to_app(n)->get_arg(0)), tout << "n: " << mk_ismt2_pp(n, m_manager) << "\n";);
SASSERT(is_relevant(to_app(n)->get_arg(0)));
}
else {
CTRACE("relevancy_bug", !is_relevant(n), tout << "n: " << mk_ismt2_pp(n, m_manager) << "\n";);
SASSERT(is_relevant(n));
}
}
return true;
}
/**
\brief Check if expressions attached to bool_variables and enodes have a consistent assignment.
For all a, b. root(a) == root(b) ==> get_assignment(a) == get_assignment(b)
*/
bool context::check_eqc_bool_assignment() const {
ptr_vector<enode>::const_iterator it = m_enodes.begin();
ptr_vector<enode>::const_iterator end = m_enodes.end();
for (; it != end; ++it) {
enode * e = *it;
if (m_manager.is_bool(e->get_owner())) {
enode * r = e->get_root();
CTRACE("eqc_bool", get_assignment(e) != get_assignment(r),
tout << "#" << e->get_owner_id() << "\n" << mk_pp(e->get_owner(), m_manager) << "\n";
tout << "#" << r->get_owner_id() << "\n" << mk_pp(r->get_owner(), m_manager) << "\n";
tout << "assignments: " << get_assignment(e) << " " << get_assignment(r) << "\n";
display(tout););
SASSERT(get_assignment(e) == get_assignment(r));
}
}
return true;
}
bool context::check_bool_var_vector_sizes() const {
SASSERT(m_assignment.size() == 2 * m_bdata.size());
SASSERT(m_watches.size() == 2 * m_bdata.size());
SASSERT(m_bdata.size() == m_activity.size());
SASSERT(m_bool_var2expr.size() == m_bdata.size());
return true;
}
/**
\brief Check the following property:
- for every equality atom (= lhs rhs) assigned to false, relevant:
if lhs->get_root() and rhs->get_root() are attached to theory variables v1 and v2 of theory t,
then there is an entry (t, v1', v2') in m_propagated_th_diseqs such that,
(= get_enode(v1') get_enode(v2')) is congruent to (= lhs rhs).
*/
bool context::check_th_diseq_propagation() const {
TRACE("check_th_diseq_propagation", tout << "m_propagated_th_diseqs.size() " << m_propagated_th_diseqs.size() << "\n";);
int num = get_num_bool_vars();
for (bool_var v = 0; v < num; v++) {
if (has_enode(v)) {
enode * n = bool_var2enode(v);
if (n->is_eq() && is_relevant(n) && get_assignment(v) == l_false) {
TRACE("check_th_diseq_propagation", tout << "checking: #" << n->get_owner_id() << " " << mk_bounded_pp(n->get_owner(), m_manager) << "\n";);
enode * lhs = n->get_arg(0)->get_root();
enode * rhs = n->get_arg(1)->get_root();
if (rhs->is_interpreted() && lhs->is_interpreted())
continue;
TRACE("check_th_diseq_propagation", tout << "num. theory_vars: " << lhs->get_num_th_vars() << " "
<< mk_pp(m_manager.get_sort(lhs->get_owner()), m_manager) << "\n";);
theory_var_list * l = lhs->get_th_var_list();
while (l) {
theory_id th_id = l->get_th_id();
theory * th = get_theory(th_id);
TRACE("check_th_diseq_propagation", tout << "checking theory: " << m_manager.get_family_name(th_id) << "\n";);
// if the theory doesn't use diseqs, then the diseqs are not propagated.
if (th->use_diseqs() && rhs->get_th_var(th_id) != null_theory_var) {
// lhs and rhs are attached to theory th_id
svector<new_th_eq>::const_iterator it = m_propagated_th_diseqs.begin();
svector<new_th_eq>::const_iterator end = m_propagated_th_diseqs.end();
for (; it != end; ++it) {
if (it->m_th_id == th_id) {
enode * lhs_prime = th->get_enode(it->m_lhs)->get_root();
enode * rhs_prime = th->get_enode(it->m_rhs)->get_root();
TRACE("check_th_diseq_propagation",
tout << m_manager.get_family_name(it->m_th_id) << "\n";);
if ((lhs == lhs_prime && rhs == rhs_prime) ||
(rhs == lhs_prime && lhs == rhs_prime)) {
TRACE("check_th_diseq_propagation", tout << "ok v" << v << " " << get_assignment(v) << "\n";);
break;
}
}
}
if (it == end) {
// missed theory diseq propagation
display(std::cout);
std::cout << "checking theory: " << m_manager.get_family_name(th_id) << "\n";
std::cout << "root: #" << n->get_root()->get_owner_id() << " node: #" << n->get_owner_id() << "\n";
std::cout << mk_pp(n->get_owner(), m_manager) << "\n";
std::cout << "lhs: #" << lhs->get_owner_id() << ", rhs: #" << rhs->get_owner_id() << "\n";
std::cout << mk_bounded_pp(lhs->get_owner(), m_manager) << " " << mk_bounded_pp(rhs->get_owner(), m_manager) << "\n";
}
SASSERT(it != end);
}
l = l->get_next();
}
}
}
}
return true;
}
bool context::check_missing_diseq_conflict() const {
svector<enode_pair>::const_iterator it = m_diseq_vector.begin();
svector<enode_pair>::const_iterator end = m_diseq_vector.end();
for (; it != end; ++it) {
enode * n1 = it->first;
enode * n2 = it->second;
if (n1->get_root() == n2->get_root()) {
TRACE("diseq_bug",
tout << "n1: #" << n1->get_owner_id() << ", n2: #" << n2->get_owner_id() <<
", r: #" << n1->get_root()->get_owner_id() << "\n";
tout << "n1 parents:\n"; display_parent_eqs(tout, n1);
tout << "n2 parents:\n"; display_parent_eqs(tout, n2);
tout << "r parents:\n"; display_parent_eqs(tout, n1->get_root());
);
UNREACHABLE();
}
}
return true;
}
#endif
};