3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 19:53:34 +00:00
z3/lib/pattern_inference.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

745 lines
27 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
pattern_inference.cpp
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2006-12-08.
Revision History:
--*/
#include"pattern_inference.h"
#include"ast_ll_pp.h"
#include"ast_pp.h"
#include"ast_util.h"
#include"warning.h"
#include"arith_decl_plugin.h"
#include"pull_quant.h"
#include"well_sorted.h"
#include"for_each_expr.h"
void smaller_pattern::save(expr * p1, expr * p2) {
expr_pair e(p1, p2);
if (!m_cache.contains(e)) {
TRACE("smaller_pattern_proc", tout << "saving: " << p1->get_id() << " " << p2->get_id() << "\n";);
m_cache.insert(e);
m_todo.push_back(e);
}
}
bool smaller_pattern::process(expr * p1, expr * p2) {
m_todo.reset();
m_cache.reset();
save(p1, p2);
while (!m_todo.empty()) {
expr_pair & curr = m_todo.back();
p1 = curr.first;
p2 = curr.second;
m_todo.pop_back();
ast_kind k1 = p1->get_kind();
if (k1 != AST_VAR && k1 != p2->get_kind())
return false;
switch (k1) {
case AST_APP: {
app * app1 = to_app(p1);
app * app2 = to_app(p2);
unsigned num1 = app1->get_num_args();
if (num1 != app2->get_num_args() || app1->get_decl() != app2->get_decl())
return false;
for (unsigned i = 0; i < num1; i++)
save(app1->get_arg(i), app2->get_arg(i));
break;
}
case AST_VAR: {
unsigned idx = to_var(p1)->get_idx();
if (idx < m_bindings.size()) {
if (m_bindings[idx] == 0)
m_bindings[idx] = p2;
else if (m_bindings[idx] != p2)
return false;
}
// it is a variable bound by an external quantifier
else if (p1 != p2)
return false;
break;
}
default:
if (p1 != p2)
return false;
break;
}
}
return true;
}
bool smaller_pattern::operator()(unsigned num_bindings, expr * p1, expr * p2) {
m_bindings.resize(num_bindings);
for (unsigned i = 0; i < num_bindings; i++)
m_bindings[i] = 0;
return process(p1, p2);
}
pattern_inference::pattern_inference(ast_manager & m, pattern_inference_params & params):
simplifier(m),
m_params(params),
m_bfid(m.get_basic_family_id()),
m_afid(m.get_family_id("arith")),
m_le(m),
m_nested_arith_only(true),
m_block_loop_patterns(params.m_pi_block_loop_patterns),
m_candidates(m),
m_pattern_weight_lt(m_candidates_info),
m_collect(m, *this),
m_contains_subpattern(*this),
m_database(m) {
if (params.m_pi_arith == AP_NO)
register_forbidden_family(m_afid);
enable_ac_support(false);
}
void pattern_inference::collect::operator()(expr * n, unsigned num_bindings) {
SASSERT(m_info.empty());
SASSERT(m_todo.empty());
SASSERT(m_cache.empty());
m_num_bindings = num_bindings;
m_todo.push_back(entry(n, 0));
while (!m_todo.empty()) {
entry & e = m_todo.back();
n = e.m_node;
unsigned delta = e.m_delta;
TRACE("collect", tout << "processing: " << n->get_id() << " " << delta << " kind: " << n->get_kind() << "\n";);
TRACE("collect_info", tout << mk_pp(n, m_manager) << "\n";);
if (visit_children(n, delta)) {
m_todo.pop_back();
save_candidate(n, delta);
}
}
reset();
}
inline void pattern_inference::collect::visit(expr * n, unsigned delta, bool & visited) {
entry e(n, delta);
if (!m_cache.contains(e)) {
m_todo.push_back(e);
visited = false;
}
}
bool pattern_inference::collect::visit_children(expr * n, unsigned delta) {
bool visited = true;
unsigned i;
switch (n->get_kind()) {
case AST_APP:
i = to_app(n)->get_num_args();
while (i > 0) {
--i;
visit(to_app(n)->get_arg(i), delta, visited);
}
break;
case AST_QUANTIFIER:
visit(to_quantifier(n)->get_expr(), delta + to_quantifier(n)->get_num_decls(), visited);
break;
default:
break;
}
return visited;
}
inline void pattern_inference::collect::save(expr * n, unsigned delta, info * i) {
m_cache.insert(entry(n, delta), i);
if (i != 0)
m_info.push_back(i);
}
void pattern_inference::collect::save_candidate(expr * n, unsigned delta) {
switch (n->get_kind()) {
case AST_VAR: {
unsigned idx = to_var(n)->get_idx();
if (idx >= delta) {
idx = idx - delta;
uint_set free_vars;
if (idx < m_num_bindings)
free_vars.insert(idx);
info * i = 0;
if (delta == 0)
i = alloc(info, m_manager, n, free_vars, 1);
else
i = alloc(info, m_manager, m_manager.mk_var(idx, to_var(n)->get_sort()), free_vars, 1);
save(n, delta, i);
}
else {
save(n, delta, 0);
}
return;
}
case AST_APP: {
app * c = to_app(n);
func_decl * decl = c->get_decl();
if (m_owner.is_forbidden(c)) {
save(n, delta, 0);
return;
}
if (c->get_num_args() == 0) {
save(n, delta, alloc(info, m_manager, n, uint_set(), 1));
return;
}
ptr_buffer<expr> buffer;
bool changed = false; // false if none of the children is mapped to a node different from itself.
uint_set free_vars;
unsigned size = 1;
unsigned num = c->get_num_args();
for (unsigned i = 0; i < num; i++) {
expr * child = c->get_arg(i);
info * child_info = 0;
#ifdef Z3DEBUG
bool found =
#endif
m_cache.find(entry(child, delta), child_info);
SASSERT(found);
if (child_info == 0) {
save(n, delta, 0);
return;
}
buffer.push_back(child_info->m_node.get());
free_vars |= child_info->m_free_vars;
size += child_info->m_size;
if (child != child_info->m_node.get())
changed = true;
}
app * new_node = 0;
if (changed)
new_node = m_manager.mk_app(decl, buffer.size(), buffer.c_ptr());
else
new_node = to_app(n);
save(n, delta, alloc(info, m_manager, new_node, free_vars, size));
// Remark: arithmetic patterns are only used if they are nested inside other terms.
// That is, we never consider x + 1 as pattern. On the other hand, f(x+1) can be a pattern
// if arithmetic is not in the forbidden list.
//
// Remark: The rule above has an exception. The operators (div, idiv, mod) are allowed to be
// used as patterns even when they are not nested in other terms. The motivation is that
// Z3 currently doesn't implement them (i.e., they are uninterpreted). So, some users add axioms
// stating properties about these operators.
family_id fid = c->get_family_id();
decl_kind k = c->get_decl_kind();
if (!free_vars.empty() &&
(fid != m_afid || (fid == m_afid && !m_owner.m_nested_arith_only && (k == OP_DIV || k == OP_IDIV || k == OP_MOD || k == OP_REM || k == OP_MUL)))) {
TRACE("pattern_inference", tout << "potential candidate: \n" << mk_pp(new_node, m_manager) << "\n";);
m_owner.add_candidate(new_node, free_vars, size);
}
return;
}
default:
save(n, delta, 0);
return;
}
}
void pattern_inference::collect::reset() {
m_cache.reset();
std::for_each(m_info.begin(), m_info.end(), delete_proc<info>());
m_info.reset();
SASSERT(m_todo.empty());
}
void pattern_inference::add_candidate(app * n, uint_set const & free_vars, unsigned size) {
for (unsigned i = 0; i < m_num_no_patterns; i++) {
if (n == m_no_patterns[i])
return;
}
if (!m_candidates_info.contains(n)) {
m_candidates_info.insert(n, info(free_vars, size));
m_candidates.push_back(n);
}
}
/**
\brief Copy the non-looping patterns in m_candidates to result when m_params.m_pi_block_loop_patterns = true.
Otherwise, copy m_candidates to result.
*/
void pattern_inference::filter_looping_patterns(ptr_vector<app> & result) {
unsigned num = m_candidates.size();
for (unsigned i1 = 0; i1 < num; i1++) {
app * n1 = m_candidates.get(i1);
expr2info::obj_map_entry * e1 = m_candidates_info.find_core(n1);
SASSERT(e1);
uint_set const & s1 = e1->get_data().m_value.m_free_vars;
if (m_block_loop_patterns) {
bool smaller = false;
for (unsigned i2 = 0; i2 < num; i2++) {
if (i1 != i2) {
app * n2 = m_candidates.get(i2);
expr2info::obj_map_entry * e2 = m_candidates_info.find_core(n2);
if (e2) {
uint_set const & s2 = e2->get_data().m_value.m_free_vars;
// Remark: the comparison operator only makes sense if both AST nodes
// contain the same number of variables.
// Example:
// (f X Y) <: (f (g X Z W) Y)
if (s1 == s2 && m_le(m_num_bindings, n1, n2) && !m_le(m_num_bindings, n2, n1)) {
smaller = true;
break;
}
}
}
}
if (!smaller)
result.push_back(n1);
else
m_candidates_info.erase(n1);
}
else {
result.push_back(n1);
}
}
}
inline void pattern_inference::contains_subpattern::save(expr * n) {
unsigned id = n->get_id();
m_already_processed.assure_domain(id);
if (!m_already_processed.contains(id)) {
m_todo.push_back(n);
m_already_processed.insert(id);
}
}
bool pattern_inference::contains_subpattern::operator()(expr * n) {
m_already_processed.reset();
m_todo.reset();
expr2info::obj_map_entry * _e = m_owner.m_candidates_info.find_core(n);
SASSERT(_e);
uint_set const & s1 = _e->get_data().m_value.m_free_vars;
save(n);
unsigned num;
while (!m_todo.empty()) {
expr * curr = m_todo.back();
m_todo.pop_back();
switch (curr->get_kind()) {
case AST_APP:
if (curr != n) {
expr2info::obj_map_entry * e = m_owner.m_candidates_info.find_core(curr);
if (e) {
uint_set const & s2 = e->get_data().m_value.m_free_vars;
SASSERT(s2.subset_of(s1));
if (s1 == s2) {
TRACE("pattern_inference", tout << mk_pp(n, m_owner.m_manager) << "\nis bigger than\n" << mk_pp(to_app(curr), m_owner.m_manager) << "\n";);
return true;
}
}
}
num = to_app(curr)->get_num_args();
for (unsigned i = 0; i < num; i++)
save(to_app(curr)->get_arg(i));
break;
case AST_VAR:
break;
default:
UNREACHABLE();
}
}
return false;
}
/**
Return true if n contains a direct/indirect child that is also a
pattern, and contains the same number of free variables.
*/
inline bool pattern_inference::contains_subpattern(expr * n) {
return m_contains_subpattern(n);
}
/**
\brief Copy a pattern p in patterns to result, if there is no
direct/indirect child of p in patterns which contains the same set
of variables.
Remark: Every pattern p in patterns is also a member of
m_pattern_map.
*/
void pattern_inference::filter_bigger_patterns(ptr_vector<app> const & patterns, ptr_vector<app> & result) {
ptr_vector<app>::const_iterator it = patterns.begin();
ptr_vector<app>::const_iterator end = patterns.end();
for (; it != end; ++it) {
app * curr = *it;
if (!contains_subpattern(curr))
result.push_back(curr);
}
}
bool pattern_inference::pattern_weight_lt::operator()(expr * n1, expr * n2) const {
expr2info::obj_map_entry * e1 = m_candidates_info.find_core(n1);
expr2info::obj_map_entry * e2 = m_candidates_info.find_core(n2);
SASSERT(e1 != 0);
SASSERT(e2 != 0);
info const & i1 = e1->get_data().m_value;
info const & i2 = e2->get_data().m_value;
unsigned num_free_vars1 = i1.m_free_vars.num_elems();
unsigned num_free_vars2 = i2.m_free_vars.num_elems();
return num_free_vars1 > num_free_vars2 || (num_free_vars1 == num_free_vars2 && i1.m_size < i2.m_size);
}
/**
\brief Create unary patterns (single expressions that contain all
bound variables). If a candidate does not contain all bound
variables, then it is copied to remaining_candidate_patterns. The
new patterns are stored in result.
*/
void pattern_inference::candidates2unary_patterns(ptr_vector<app> const & candidate_patterns,
ptr_vector<app> & remaining_candidate_patterns,
app_ref_buffer & result) {
ptr_vector<app>::const_iterator it = candidate_patterns.begin();
ptr_vector<app>::const_iterator end = candidate_patterns.end();
for (; it != end; ++it) {
app * candidate = *it;
expr2info::obj_map_entry * e = m_candidates_info.find_core(candidate);
info const & i = e->get_data().m_value;
if (i.m_free_vars.num_elems() == m_num_bindings) {
app * new_pattern = m_manager.mk_pattern(candidate);
result.push_back(new_pattern);
}
else {
remaining_candidate_patterns.push_back(candidate);
}
}
}
// TODO: this code is too inefficient when the number of candidate
// patterns is too big.
// HACK: limit the number of case-splits:
#define MAX_SPLITS 32
void pattern_inference::candidates2multi_patterns(unsigned max_num_patterns,
ptr_vector<app> const & candidate_patterns,
app_ref_buffer & result) {
SASSERT(!candidate_patterns.empty());
m_pre_patterns.push_back(alloc(pre_pattern));
unsigned sz = candidate_patterns.size();
unsigned num_splits = 0;
for (unsigned j = 0; j < m_pre_patterns.size(); j++) {
pre_pattern * curr = m_pre_patterns[j];
if (curr->m_free_vars.num_elems() == m_num_bindings) {
app * new_pattern = m_manager.mk_pattern(curr->m_exprs.size(), curr->m_exprs.c_ptr());
result.push_back(new_pattern);
if (result.size() >= max_num_patterns)
return;
}
else if (curr->m_idx < sz) {
app * n = candidate_patterns[curr->m_idx];
expr2info::obj_map_entry * e = m_candidates_info.find_core(n);
uint_set const & s = e->get_data().m_value.m_free_vars;
if (!s.subset_of(curr->m_free_vars)) {
pre_pattern * new_p = alloc(pre_pattern,*curr);
new_p->m_exprs.push_back(n);
new_p->m_free_vars |= s;
new_p->m_idx++;
m_pre_patterns.push_back(new_p);
if (num_splits < MAX_SPLITS) {
m_pre_patterns[j] = 0;
curr->m_idx++;
m_pre_patterns.push_back(curr);
num_splits++;
}
}
else {
m_pre_patterns[j] = 0;
curr->m_idx++;
m_pre_patterns.push_back(curr);
}
}
TRACE("pattern_inference", tout << "m_pre_patterns.size(): " << m_pre_patterns.size() <<
"\nnum_splits: " << num_splits << "\n";);
}
}
void pattern_inference::reset_pre_patterns() {
std::for_each(m_pre_patterns.begin(), m_pre_patterns.end(), delete_proc<pre_pattern>());
m_pre_patterns.reset();
}
static void dump_app_vector(std::ostream & out, ptr_vector<app> const & v, ast_manager & m) {
ptr_vector<app>::const_iterator it = v.begin();
ptr_vector<app>::const_iterator end = v.end();
for (; it != end; ++it)
out << mk_pp(*it, m) << "\n";
}
bool pattern_inference::is_forbidden(app * n) const {
func_decl const * decl = n->get_decl();
if (is_ground(n))
return false;
// Remark: skolem constants should not be used in patterns, since they do not
// occur outside of the quantifier. That is, Z3 will never match this kind of
// pattern.
if (m_params.m_pi_avoid_skolems && decl->is_skolem()) {
CTRACE("pattern_inference_skolem", decl->is_skolem(), tout << "ignoring: " << mk_pp(n, m_manager) << "\n";);
return true;
}
if (is_forbidden(decl))
return true;
return false;
}
bool pattern_inference::has_preferred_patterns(ptr_vector<app> & candidate_patterns, app_ref_buffer & result) {
if (m_preferred.empty())
return false;
bool found = false;
ptr_vector<app>::const_iterator it = candidate_patterns.begin();
ptr_vector<app>::const_iterator end = candidate_patterns.end();
for (; it != end; ++it) {
app * candidate = *it;
if (m_preferred.contains(to_app(candidate)->get_decl())) {
expr2info::obj_map_entry * e = m_candidates_info.find_core(candidate);
info const & i = e->get_data().m_value;
if (i.m_free_vars.num_elems() == m_num_bindings) {
TRACE("pattern_inference", tout << "found preferred pattern:\n" << mk_pp(candidate, m_manager) << "\n";);
app * p = m_manager.mk_pattern(candidate);
result.push_back(p);
found = true;
}
}
}
return found;
}
void pattern_inference::mk_patterns(unsigned num_bindings,
expr * n,
unsigned num_no_patterns,
expr * const * no_patterns,
app_ref_buffer & result) {
m_num_bindings = num_bindings;
m_num_no_patterns = num_no_patterns;
m_no_patterns = no_patterns;
m_collect(n, num_bindings);
TRACE("pattern_inference",
tout << mk_pp(n, m_manager);
tout << "\ncandidates:\n";
unsigned num = m_candidates.size();
for (unsigned i = 0; i < num; i++) {
tout << mk_pp(m_candidates.get(i), m_manager) << "\n";
});
if (!m_candidates.empty()) {
m_tmp1.reset();
filter_looping_patterns(m_tmp1);
TRACE("pattern_inference",
tout << "candidates after removing looping-patterns:\n";
dump_app_vector(tout, m_tmp1, m_manager););
SASSERT(!m_tmp1.empty());
if (!has_preferred_patterns(m_tmp1, result)) {
// continue if there are no preferred patterns
m_tmp2.reset();
filter_bigger_patterns(m_tmp1, m_tmp2);
SASSERT(!m_tmp2.empty());
TRACE("pattern_inference",
tout << "candidates after removing bigger patterns:\n";
dump_app_vector(tout, m_tmp2, m_manager););
m_tmp1.reset();
candidates2unary_patterns(m_tmp2, m_tmp1, result);
unsigned num_extra_multi_patterns = m_params.m_pi_max_multi_patterns;
if (result.empty())
num_extra_multi_patterns++;
if (num_extra_multi_patterns > 0 && !m_tmp1.empty()) {
// m_pattern_weight_lt is not a total order
std::stable_sort(m_tmp1.begin(), m_tmp1.end(), m_pattern_weight_lt);
TRACE("pattern_inference",
tout << "candidates after sorting:\n";
dump_app_vector(tout, m_tmp1, m_manager););
candidates2multi_patterns(num_extra_multi_patterns, m_tmp1, result);
}
}
}
reset_pre_patterns();
m_candidates_info.reset();
m_candidates.reset();
}
#include"database.h" // defines g_pattern_database
void pattern_inference::reduce1_quantifier(quantifier * q) {
TRACE("pattern_inference", tout << "processing:\n" << mk_pp(q, m_manager) << "\n";);
if (!q->is_forall()) {
simplifier::reduce1_quantifier(q);
return;
}
int weight = q->get_weight();
if (m_params.m_pi_use_database) {
m_database.initialize(g_pattern_database);
app_ref_vector new_patterns(m_manager);
unsigned new_weight;
if (m_database.match_quantifier(q, new_patterns, new_weight)) {
#ifdef Z3DEBUG
for (unsigned i = 0; i < new_patterns.size(); i++) { SASSERT(is_well_sorted(m_manager, new_patterns.get(i))); }
#endif
quantifier_ref new_q(m_manager);
if (q->get_num_patterns() > 0) {
// just update the weight...
TRACE("pattern_inference", tout << "updating weight to: " << new_weight << "\n" << mk_pp(q, m_manager) << "\n";);
new_q = m_manager.update_quantifier_weight(q, new_weight);
}
else {
quantifier_ref tmp(m_manager);
tmp = m_manager.update_quantifier(q, new_patterns.size(), (expr**) new_patterns.c_ptr(), q->get_expr());
new_q = m_manager.update_quantifier_weight(tmp, new_weight);
TRACE("pattern_inference", tout << "found patterns in database, weight: " << new_weight << "\n" << mk_pp(new_q, m_manager) << "\n";);
}
proof * pr = 0;
if (m_manager.fine_grain_proofs())
pr = m_manager.mk_rewrite(q, new_q);
cache_result(q, new_q, pr);
return;
}
}
if (q->get_num_patterns() > 0) {
simplifier::reduce1_quantifier(q);
return;
}
if (m_params.m_pi_nopat_weight >= 0)
weight = m_params.m_pi_nopat_weight;
SASSERT(q->get_num_patterns() == 0);
expr * new_body;
proof * new_body_pr;
get_cached(q->get_expr(), new_body, new_body_pr);
ptr_buffer<expr> new_no_patterns;
unsigned num_no_patterns = q->get_num_no_patterns();
for (unsigned i = 0; i < num_no_patterns; i++) {
expr * new_pattern;
proof * new_pattern_pr;
get_cached(q->get_no_pattern(i), new_pattern, new_pattern_pr);
new_no_patterns.push_back(new_pattern);
}
app_ref_buffer new_patterns(m_manager);
if (m_params.m_pi_arith == AP_CONSERVATIVE)
m_forbidden.push_back(m_afid);
mk_patterns(q->get_num_decls(), new_body, new_no_patterns.size(), new_no_patterns.c_ptr(), new_patterns);
if (new_patterns.empty() && !new_no_patterns.empty()) {
if (new_patterns.empty()) {
mk_patterns(q->get_num_decls(), new_body, 0, 0, new_patterns);
if (m_params.m_pi_warnings && !new_patterns.empty()) {
warning_msg("ignoring nopats annotation because Z3 couldn't find any other pattern (quantifier id: %s)", q->get_qid().str().c_str());
}
}
}
if (m_params.m_pi_arith == AP_CONSERVATIVE) {
m_forbidden.pop_back();
if (new_patterns.empty()) {
flet<bool> l1(m_block_loop_patterns, false); // allow looping patterns
mk_patterns(q->get_num_decls(), new_body, new_no_patterns.size(), new_no_patterns.c_ptr(), new_patterns);
if (!new_patterns.empty()) {
weight = std::max(weight, static_cast<int>(m_params.m_pi_arith_weight));
if (m_params.m_pi_warnings) {
warning_msg("using arith. in pattern (quantifier id: %s), the weight was increased to %d (this value can be modified using PI_ARITH_WEIGHT=<val>).",
q->get_qid().str().c_str(), weight);
}
}
}
}
if (m_params.m_pi_arith != AP_NO && new_patterns.empty()) {
if (new_patterns.empty()) {
flet<bool> l1(m_nested_arith_only, false); // try to find a non-nested arith pattern
flet<bool> l2(m_block_loop_patterns, false); // allow looping patterns
mk_patterns(q->get_num_decls(), new_body, new_no_patterns.size(), new_no_patterns.c_ptr(), new_patterns);
if (!new_patterns.empty()) {
weight = std::max(weight, static_cast<int>(m_params.m_pi_non_nested_arith_weight));
if (m_params.m_pi_warnings) {
warning_msg("using non nested arith. pattern (quantifier id: %s), the weight was increased to %d (this value can be modified using PI_NON_NESTED_ARITH_WEIGHT=<val>).",
q->get_qid().str().c_str(), weight);
}
// verbose_stream() << mk_pp(q, m_manager) << "\n";
}
}
}
quantifier_ref new_q(m_manager);
new_q = m_manager.update_quantifier(q, new_patterns.size(), (expr**) new_patterns.c_ptr(), new_body);
if (weight != q->get_weight())
new_q = m_manager.update_quantifier_weight(new_q, weight);
proof_ref pr(m_manager);
if (m_manager.fine_grain_proofs()) {
if (new_body_pr == 0)
new_body_pr = m_manager.mk_reflexivity(new_body);
pr = m_manager.mk_quant_intro(q, new_q, new_body_pr);
}
if (new_patterns.empty() && m_params.m_pi_pull_quantifiers) {
pull_quant pull(m_manager);
expr_ref new_expr(m_manager);
proof_ref new_pr(m_manager);
pull(new_q, new_expr, new_pr);
quantifier * new_new_q = to_quantifier(new_expr);
if (new_new_q != new_q) {
mk_patterns(new_new_q->get_num_decls(), new_new_q->get_expr(), 0, 0, new_patterns);
if (!new_patterns.empty()) {
if (m_params.m_pi_warnings) {
warning_msg("pulled nested quantifier to be able to find an useable pattern (quantifier id: %s)", q->get_qid().str().c_str());
}
new_q = m_manager.update_quantifier(new_new_q, new_patterns.size(), (expr**) new_patterns.c_ptr(), new_new_q->get_expr());
if (m_manager.fine_grain_proofs()) {
pr = m_manager.mk_transitivity(pr, new_pr);
pr = m_manager.mk_transitivity(pr, m_manager.mk_quant_intro(new_new_q, new_q, m_manager.mk_reflexivity(new_q->get_expr())));
}
TRACE("pattern_inference", tout << "pulled quantifier:\n" << mk_pp(new_q, m_manager) << "\n";);
}
}
}
if (new_patterns.empty()) {
if (m_params.m_pi_warnings) {
warning_msg("failed to find a pattern for quantifier (quantifier id: %s)", q->get_qid().str().c_str());
}
TRACE("pi_failed", tout << mk_pp(q, m_manager) << "\n";);
}
if (new_patterns.empty() && new_body == q->get_expr()) {
cache_result(q, q, 0);
return;
}
cache_result(q, new_q, pr);
}
#if 0
// unused
static void dump_expr_vector(std::ostream & out, ptr_vector<expr> const & v, ast_manager & m) {
ptr_vector<expr>::const_iterator it = v.begin();
ptr_vector<expr>::const_iterator end = v.end();
for (; it != end; ++it)
out << mk_pp(*it, m) << "\n";
}
#endif