mirror of
https://github.com/Z3Prover/z3
synced 2025-04-11 11:43:36 +00:00
482 lines
14 KiB
C++
482 lines
14 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
expr2polynomial.cpp
|
|
|
|
Abstract:
|
|
|
|
Translator from Z3 expressions into multivariate polynomials (and back).
|
|
|
|
|
|
Author:
|
|
|
|
Leonardo (leonardo) 2011-12-23
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#include"expr2polynomial.h"
|
|
#include"expr2var.h"
|
|
#include"arith_decl_plugin.h"
|
|
#include"ast_smt2_pp.h"
|
|
#include"z3_exception.h"
|
|
#include"cooperate.h"
|
|
|
|
struct expr2polynomial::imp {
|
|
struct frame {
|
|
app * m_curr;
|
|
unsigned m_idx;
|
|
frame():m_curr(0), m_idx(0) {}
|
|
frame(app * t):m_curr(t), m_idx(0) {}
|
|
};
|
|
|
|
expr2polynomial & m_wrapper;
|
|
ast_manager & m_am;
|
|
arith_util m_autil;
|
|
polynomial::manager & m_pm;
|
|
expr2var * m_expr2var;
|
|
bool m_expr2var_owner;
|
|
expr_ref_vector m_var2expr;
|
|
|
|
obj_map<expr, unsigned> m_cache;
|
|
expr_ref_vector m_cached_domain;
|
|
polynomial::polynomial_ref_vector m_cached_polynomials;
|
|
polynomial::scoped_numeral_vector m_cached_denominators;
|
|
|
|
svector<frame> m_frame_stack;
|
|
polynomial::polynomial_ref_vector m_presult_stack;
|
|
polynomial::scoped_numeral_vector m_dresult_stack;
|
|
|
|
volatile bool m_cancel;
|
|
|
|
imp(expr2polynomial & w, ast_manager & am, polynomial::manager & pm, expr2var * e2v):
|
|
m_wrapper(w),
|
|
m_am(am),
|
|
m_autil(am),
|
|
m_pm(pm),
|
|
m_expr2var(e2v == 0 ? alloc(expr2var, am) : e2v),
|
|
m_expr2var_owner(e2v == 0),
|
|
m_var2expr(am),
|
|
m_cached_domain(am),
|
|
m_cached_polynomials(pm),
|
|
m_cached_denominators(pm.m()),
|
|
m_presult_stack(pm),
|
|
m_dresult_stack(pm.m()),
|
|
m_cancel(false) {
|
|
}
|
|
|
|
~imp() {
|
|
if (m_expr2var_owner)
|
|
dealloc(m_expr2var);
|
|
}
|
|
|
|
ast_manager & m() { return m_am; }
|
|
polynomial::manager & pm() { return m_pm; }
|
|
polynomial::numeral_manager & nm() { return pm().m(); }
|
|
|
|
void reset() {
|
|
m_frame_stack.reset();
|
|
m_presult_stack.reset();
|
|
m_dresult_stack.reset();
|
|
}
|
|
|
|
void reset_cache() {
|
|
m_cache.reset();
|
|
m_cached_domain.reset();
|
|
m_cached_polynomials.reset();
|
|
m_cached_denominators.reset();
|
|
}
|
|
|
|
void checkpoint() {
|
|
if (m_cancel)
|
|
throw default_exception("canceled");
|
|
cooperate("expr2polynomial");
|
|
}
|
|
|
|
void push_frame(app * t) {
|
|
m_frame_stack.push_back(frame(t));
|
|
}
|
|
|
|
void cache_result(expr * t) {
|
|
SASSERT(!m_cache.contains(t));
|
|
SASSERT(m_cached_denominators.size() == m_cached_polynomials.size());
|
|
SASSERT(m_cached_denominators.size() == m_cached_domain.size());
|
|
if (t->get_ref_count() <= 1)
|
|
return;
|
|
unsigned idx = m_cached_polynomials.size();
|
|
m_cache.insert(t, idx);
|
|
m_cached_domain.push_back(t);
|
|
m_cached_polynomials.push_back(m_presult_stack.back());
|
|
m_cached_denominators.push_back(m_dresult_stack.back());
|
|
}
|
|
|
|
bool is_cached(expr * t) {
|
|
return t->get_ref_count() > 1 && m_cache.contains(t);
|
|
}
|
|
|
|
bool is_int_real(expr * t) {
|
|
return m_autil.is_int_real(t);
|
|
}
|
|
|
|
void store_result(expr * t, polynomial::polynomial * p, polynomial::numeral & d) {
|
|
m_presult_stack.push_back(p);
|
|
m_dresult_stack.push_back(d);
|
|
cache_result(t);
|
|
}
|
|
|
|
void store_var_poly(expr * t) {
|
|
polynomial::var x = m_expr2var->to_var(t);
|
|
if (x == UINT_MAX) {
|
|
bool is_int = m_autil.is_int(t);
|
|
x = m_wrapper.mk_var(is_int);
|
|
m_expr2var->insert(t, x);
|
|
if (x >= m_var2expr.size())
|
|
m_var2expr.resize(x+1, 0);
|
|
m_var2expr.set(x, t);
|
|
}
|
|
polynomial::numeral one(1);
|
|
store_result(t, pm().mk_polynomial(x), one);
|
|
}
|
|
|
|
void store_const_poly(app * n) {
|
|
rational val;
|
|
VERIFY(m_autil.is_numeral(n, val));
|
|
polynomial::scoped_numeral d(nm());
|
|
d = val.to_mpq().denominator();
|
|
store_result(n, pm().mk_const(numerator(val)), d);
|
|
}
|
|
|
|
bool visit_arith_app(app * t) {
|
|
switch (t->get_decl_kind()) {
|
|
case OP_NUM:
|
|
store_const_poly(t);
|
|
return true;
|
|
case OP_ADD: case OP_SUB: case OP_MUL: case OP_UMINUS: case OP_TO_REAL:
|
|
push_frame(t);
|
|
return false;
|
|
case OP_POWER: {
|
|
rational k;
|
|
SASSERT(t->get_num_args() == 2);
|
|
if (!m_autil.is_numeral(t->get_arg(1), k) || !k.is_int() || !k.is_unsigned()) {
|
|
store_var_poly(t);
|
|
return true;
|
|
}
|
|
push_frame(t);
|
|
return false;
|
|
}
|
|
default:
|
|
// can't handle operator
|
|
store_var_poly(t);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool visit(expr * t) {
|
|
SASSERT(is_int_real(t));
|
|
if (is_cached(t)) {
|
|
unsigned idx = m_cache.find(t);
|
|
m_presult_stack.push_back(m_cached_polynomials.get(idx));
|
|
m_dresult_stack.push_back(m_cached_denominators.get(idx));
|
|
return true;
|
|
}
|
|
|
|
SASSERT(!is_quantifier(t));
|
|
if (::is_var(t)) {
|
|
store_var_poly(t);
|
|
return true;
|
|
}
|
|
|
|
SASSERT(is_app(t));
|
|
if (!m_autil.is_arith_expr(t)) {
|
|
store_var_poly(t);
|
|
return true;
|
|
}
|
|
|
|
return visit_arith_app(to_app(t));
|
|
}
|
|
|
|
void pop(unsigned num_args) {
|
|
SASSERT(m_presult_stack.size() == m_dresult_stack.size());
|
|
SASSERT(m_presult_stack.size() >= num_args);
|
|
m_presult_stack.shrink(m_presult_stack.size() - num_args);
|
|
m_dresult_stack.shrink(m_dresult_stack.size() - num_args);
|
|
}
|
|
|
|
polynomial::polynomial * const * polynomial_args(unsigned num_args) {
|
|
SASSERT(m_presult_stack.size() >= num_args);
|
|
return m_presult_stack.c_ptr() + m_presult_stack.size() - num_args;
|
|
}
|
|
|
|
polynomial::numeral const * denominator_args(unsigned num_args) {
|
|
SASSERT(m_dresult_stack.size() >= num_args);
|
|
return m_dresult_stack.c_ptr() + m_dresult_stack.size() - num_args;
|
|
}
|
|
|
|
template<bool is_add>
|
|
void process_add_sub(app * t) {
|
|
SASSERT(t->get_num_args() <= m_presult_stack.size());
|
|
unsigned num_args = t->get_num_args();
|
|
polynomial::polynomial * const * p_args = polynomial_args(num_args);
|
|
polynomial::numeral const * d_args = denominator_args(num_args);
|
|
polynomial::polynomial_ref p(pm());
|
|
polynomial::polynomial_ref p_aux(pm());
|
|
polynomial::scoped_numeral d(nm());
|
|
polynomial::scoped_numeral d_aux(nm());
|
|
d = 1;
|
|
for (unsigned i = 0; i < num_args; i++) {
|
|
nm().lcm(d, d_args[i], d);
|
|
}
|
|
p = pm().mk_zero();
|
|
for (unsigned i = 0; i < num_args; i++) {
|
|
checkpoint();
|
|
nm().div(d, d_args[i], d_aux);
|
|
p_aux = pm().mul(d_aux, p_args[i]);
|
|
if (i == 0)
|
|
p = p_aux;
|
|
else if (is_add)
|
|
p = pm().add(p, p_aux);
|
|
else
|
|
p = pm().sub(p, p_aux);
|
|
}
|
|
pop(num_args);
|
|
store_result(t, p.get(), d.get());
|
|
}
|
|
|
|
void process_add(app * t) {
|
|
process_add_sub<true>(t);
|
|
}
|
|
|
|
void process_sub(app * t) {
|
|
process_add_sub<false>(t);
|
|
}
|
|
|
|
void process_mul(app * t) {
|
|
SASSERT(t->get_num_args() <= m_presult_stack.size());
|
|
unsigned num_args = t->get_num_args();
|
|
polynomial::polynomial * const * p_args = polynomial_args(num_args);
|
|
polynomial::numeral const * d_args = denominator_args(num_args);
|
|
polynomial::polynomial_ref p(pm());
|
|
polynomial::scoped_numeral d(nm());
|
|
p = pm().mk_const(rational(1));
|
|
d = 1;
|
|
for (unsigned i = 0; i < num_args; i++) {
|
|
checkpoint();
|
|
p = pm().mul(p, p_args[i]);
|
|
d = d * d_args[i];
|
|
}
|
|
pop(num_args);
|
|
store_result(t, p.get(), d.get());
|
|
}
|
|
|
|
void process_uminus(app * t) {
|
|
SASSERT(t->get_num_args() <= m_presult_stack.size());
|
|
polynomial::polynomial_ref neg_p(pm());
|
|
neg_p = pm().neg(m_presult_stack.back());
|
|
m_presult_stack.pop_back();
|
|
m_presult_stack.push_back(neg_p);
|
|
cache_result(t);
|
|
}
|
|
|
|
void process_power(app * t) {
|
|
SASSERT(t->get_num_args() <= m_presult_stack.size());
|
|
rational _k;
|
|
VERIFY(m_autil.is_numeral(t->get_arg(1), _k));
|
|
SASSERT(_k.is_int() && _k.is_unsigned());
|
|
unsigned k = _k.get_unsigned();
|
|
polynomial::polynomial_ref p(pm());
|
|
polynomial::scoped_numeral d(nm());
|
|
unsigned num_args = t->get_num_args();
|
|
polynomial::polynomial * const * p_args = polynomial_args(num_args);
|
|
polynomial::numeral const * d_args = denominator_args(num_args);
|
|
pm().pw(p_args[0], k, p);
|
|
nm().power(d_args[0], k, d);
|
|
pop(num_args);
|
|
store_result(t, p.get(), d.get());
|
|
}
|
|
|
|
void process_to_real(app * t) {
|
|
// do nothing
|
|
cache_result(t);
|
|
}
|
|
|
|
void process_app(app * t) {
|
|
SASSERT(m_presult_stack.size() == m_dresult_stack.size());
|
|
|
|
switch (t->get_decl_kind()) {
|
|
case OP_ADD:
|
|
process_add(t);
|
|
return;
|
|
case OP_SUB:
|
|
process_sub(t);
|
|
return;
|
|
case OP_MUL:
|
|
process_mul(t);
|
|
return;
|
|
case OP_POWER:
|
|
process_power(t);
|
|
return;
|
|
case OP_UMINUS:
|
|
process_uminus(t);
|
|
return;
|
|
case OP_TO_REAL:
|
|
process_to_real(t);
|
|
return;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
bool to_polynomial(expr * t, polynomial::polynomial_ref & p, polynomial::scoped_numeral & d) {
|
|
if (!is_int_real(t))
|
|
return false;
|
|
reset();
|
|
if (!visit(t)) {
|
|
while (!m_frame_stack.empty()) {
|
|
begin_loop:
|
|
checkpoint();
|
|
frame & fr = m_frame_stack.back();
|
|
app * t = fr.m_curr;
|
|
TRACE("expr2polynomial", tout << "processing: " << fr.m_idx << "\n" << mk_ismt2_pp(t, m()) << "\n";);
|
|
unsigned num_args = t->get_num_args();
|
|
while (fr.m_idx < num_args) {
|
|
expr * arg = t->get_arg(fr.m_idx);
|
|
fr.m_idx++;
|
|
if (!visit(arg))
|
|
goto begin_loop;
|
|
}
|
|
process_app(t);
|
|
m_frame_stack.pop_back();
|
|
}
|
|
}
|
|
p = m_presult_stack.back();
|
|
d = m_dresult_stack.back();
|
|
reset();
|
|
return true;
|
|
}
|
|
|
|
bool is_int_poly(polynomial::polynomial_ref const & p) {
|
|
unsigned sz = size(p);
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
polynomial::monomial * m = pm().get_monomial(p, i);
|
|
unsigned msz = pm().size(m);
|
|
for (unsigned j = 0; j < msz; j++) {
|
|
polynomial::var x = pm().get_var(m, j);
|
|
if (!m_wrapper.is_int(x))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void to_expr(polynomial::polynomial_ref const & p, bool use_power, expr_ref & r) {
|
|
expr_ref_buffer args(m());
|
|
expr_ref_buffer margs(m());
|
|
unsigned sz = size(p);
|
|
bool is_int = is_int_poly(p);
|
|
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
margs.reset();
|
|
polynomial::monomial * m = pm().get_monomial(p, i);
|
|
polynomial::numeral const & a = pm().coeff(p, i);
|
|
if (!nm().is_one(a)) {
|
|
margs.push_back(m_autil.mk_numeral(rational(a), is_int));
|
|
}
|
|
unsigned msz = pm().size(m);
|
|
for (unsigned j = 0; j < msz; j++) {
|
|
polynomial::var x = pm().get_var(m, j);
|
|
expr * t = m_var2expr.get(x);
|
|
if (m_wrapper.is_int(x) && !is_int) {
|
|
t = m_autil.mk_to_real(t);
|
|
}
|
|
unsigned d = pm().degree(m, j);
|
|
if (use_power && d > 1) {
|
|
margs.push_back(m_autil.mk_power(t, m_autil.mk_numeral(rational(d), is_int)));
|
|
}
|
|
else {
|
|
for (unsigned k = 0; k < d; k++)
|
|
margs.push_back(t);
|
|
}
|
|
}
|
|
if (margs.size() == 0) {
|
|
args.push_back(m_autil.mk_numeral(rational(1), is_int));
|
|
}
|
|
else if (margs.size() == 1) {
|
|
args.push_back(margs[0]);
|
|
}
|
|
else {
|
|
args.push_back(m_autil.mk_mul(margs.size(), margs.c_ptr()));
|
|
}
|
|
}
|
|
|
|
if (args.size() == 0) {
|
|
r = m_autil.mk_numeral(rational(0), is_int);
|
|
}
|
|
else if (args.size() == 1) {
|
|
r = args[0];
|
|
}
|
|
else {
|
|
r = m_autil.mk_add(args.size(), args.c_ptr());
|
|
}
|
|
}
|
|
|
|
void set_cancel(bool f) {
|
|
m_cancel = f;
|
|
}
|
|
};
|
|
|
|
expr2polynomial::expr2polynomial(ast_manager & am, polynomial::manager & pm, expr2var * e2v) {
|
|
m_imp = alloc(imp, *this, am, pm, e2v);
|
|
}
|
|
|
|
expr2polynomial::~expr2polynomial() {
|
|
dealloc(m_imp);
|
|
}
|
|
|
|
ast_manager & expr2polynomial::m() const {
|
|
return m_imp->m_am;
|
|
}
|
|
|
|
polynomial::manager & expr2polynomial::pm() const {
|
|
return m_imp->m_pm;
|
|
}
|
|
|
|
bool expr2polynomial::to_polynomial(expr * t, polynomial::polynomial_ref & p, polynomial::scoped_numeral & d) {
|
|
return m_imp->to_polynomial(t, p, d);
|
|
}
|
|
|
|
void expr2polynomial::to_expr(polynomial::polynomial_ref const & p, bool use_power, expr_ref & r) {
|
|
m_imp->to_expr(p, use_power, r);
|
|
}
|
|
|
|
bool expr2polynomial::is_var(expr * t) const {
|
|
return m_imp->m_expr2var->is_var(t);
|
|
}
|
|
|
|
expr2var const & expr2polynomial::get_mapping() const {
|
|
return *(m_imp->m_expr2var);
|
|
}
|
|
|
|
void expr2polynomial::set_cancel(bool f) {
|
|
m_imp->set_cancel(f);
|
|
}
|
|
|
|
default_expr2polynomial::default_expr2polynomial(ast_manager & am, polynomial::manager & pm):
|
|
expr2polynomial(am, pm, 0) {
|
|
}
|
|
|
|
default_expr2polynomial::~default_expr2polynomial() {
|
|
}
|
|
|
|
bool default_expr2polynomial::is_int(polynomial::var x) const {
|
|
return m_is_int[x];
|
|
}
|
|
|
|
polynomial::var default_expr2polynomial::mk_var(bool is_int) {
|
|
polynomial::var x = pm().mk_var();
|
|
m_is_int.reserve(x+1, false);
|
|
m_is_int[x] = is_int;
|
|
return x;
|
|
}
|