3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/lib/dl_mk_magic_sets.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

396 lines
14 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
dl_mk_magic_sets.cpp
Abstract:
<abstract>
Author:
Krystof Hoder (t-khoder) 2010-10-04.
Revision History:
--*/
#include<utility>
#include<sstream>
#include"ast_pp.h"
#include"dl_mk_magic_sets.h"
namespace datalog {
mk_magic_sets::mk_magic_sets(context & ctx, rule * goal_rule) :
plugin(10000, true),
m_context(ctx),
m_manager(ctx.get_manager()),
m_rules(ctx.get_rule_manager()),
m_pinned(m_manager),
m_goal_rule(goal_rule, ctx.get_rule_manager()) {
}
void mk_magic_sets::reset() {
m_extentional.reset();
m_todo.reset();
m_adorned_preds.reset();
m_adornments.reset();
m_magic_preds.reset();
m_rules.reset();
m_pinned.reset();
}
void mk_magic_sets::adornment::populate(app * lit, const var_idx_set & bound_vars) {
SASSERT(empty());
unsigned arity = lit->get_num_args();
for(unsigned i=0; i<arity; i++) {
const expr * arg = lit->get_arg(i);
bool bound = !is_var(arg) || bound_vars.contains(to_var(arg)->get_idx());
push_back(bound ? AD_BOUND : AD_FREE);
}
}
std::string mk_magic_sets::adornment::to_string() const {
std::string res;
const_iterator eit = begin();
const_iterator eend = end();
for(; eit!=eend; ++eit) {
switch(*eit) {
case AD_BOUND:
res+='b';
break;
case AD_FREE:
res+='f';
break;
default:
UNREACHABLE();
}
}
return res;
}
unsigned get_bound_arg_count(app * lit, const var_idx_set & bound_vars) {
unsigned res = 0;
unsigned n = lit->get_num_args();
for(unsigned i=0; i<n; i++) {
const expr * arg = lit->get_arg(i);
if(is_var(arg) && !bound_vars.contains(to_var(arg)->get_idx())) {
continue;
}
SASSERT(is_var(arg) || is_app(arg));
SASSERT(!is_app(arg) || to_app(arg)->get_num_args()==0);
res++;
}
return res;
}
float mk_magic_sets::get_unbound_cost(app * lit, const var_idx_set & bound_vars) {
func_decl * pred = lit->get_decl();
float res = 1;
unsigned n = lit->get_num_args();
for(unsigned i=0; i<n; i++) {
const expr * arg = lit->get_arg(i);
if(is_var(arg) && !bound_vars.contains(to_var(arg)->get_idx())) {
res*=m_context.get_sort_size_estimate(pred->get_domain(i));
}
//res-=1;
}
return res;
}
/**
\brief From \c cont which is list of indexes of tail literals of rule \c r, select
the index pointing to a literal with at least one bound variable that will be the next
bound literal in the process of creating an adorned rule. If all literals are unbound,
return -1.
*/
int mk_magic_sets::pop_bound(unsigned_vector & cont, rule * r, const var_idx_set & bound_vars) {
float best_cost;
int candidate_index = -1;
unsigned n = cont.size();
for(unsigned i=0; i<n; i++) {
app * lit = r->get_tail(cont[i]);
unsigned bound_cnt = get_bound_arg_count(lit, bound_vars);
if(bound_cnt==0) {
continue;
}
float cost = get_unbound_cost(lit, bound_vars);
if(candidate_index==-1 || cost<best_cost) {
best_cost = cost;
candidate_index = i;
}
}
if(candidate_index==-1) {
return -1;
}
if(candidate_index != static_cast<int>(n-1)) {
std::swap(cont[candidate_index], cont[n-1]);
}
unsigned res = cont.back();
cont.pop_back();
return res;
}
app * mk_magic_sets::adorn_literal(app * lit, const var_idx_set & bound_vars) {
SASSERT(!m_extentional.contains(lit->get_decl()));
func_decl * old_pred = lit->get_decl();
SASSERT(m_manager.is_bool(old_pred->get_range()));
adornment_desc adn(old_pred);
adn.m_adornment.populate(lit, bound_vars);
adornment_map::entry * e = m_adorned_preds.insert_if_not_there2(adn, 0);
func_decl * new_pred = e->get_data().m_value;
if(new_pred==0) {
std::string suffix = "ad_"+adn.m_adornment.to_string();
new_pred = m_context.mk_fresh_head_predicate(
old_pred->get_name(), symbol(suffix.c_str()),
old_pred->get_arity(), old_pred->get_domain(), old_pred);
m_pinned.push_back(new_pred);
e->get_data().m_value = new_pred;
m_todo.push_back(adn);
m_adornments.insert(new_pred, adn.m_adornment);
}
app * res = m_manager.mk_app(new_pred, lit->get_args());
m_pinned.push_back(res);
return res;
}
app * mk_magic_sets::create_magic_literal(app * l) {
func_decl * l_pred = l->get_decl();
SASSERT(m_manager.is_bool(l_pred->get_range()));
pred_adornment_map::obj_map_entry * ae = m_adornments.find_core(l_pred);
SASSERT(ae);
const adornment & adn = ae->get_data().m_value;
unsigned l_arity = l->get_num_args();
ptr_vector<expr> bound_args;
for(unsigned i=0; i<l_arity; i++) {
if(adn[i]==AD_BOUND) {
bound_args.push_back(l->get_arg(i));
}
}
pred2pred::obj_map_entry * e = m_magic_preds.insert_if_not_there2(l_pred, 0);
func_decl * mag_pred = e->get_data().m_value;
if(mag_pred==0) {
unsigned mag_arity = bound_args.size();
ptr_vector<sort> mag_domain;
for(unsigned i=0; i<l_arity; i++) {
if(adn[i]==AD_BOUND) {
mag_domain.push_back(l_pred->get_domain(i));
}
}
mag_pred = m_context.mk_fresh_head_predicate(l_pred->get_name(), symbol("ms"),
mag_arity, mag_domain.c_ptr(), l_pred);
m_pinned.push_back(mag_pred);
e->get_data().m_value = mag_pred;
}
app * res = m_manager.mk_app(mag_pred, bound_args.c_ptr());
m_pinned.push_back(res);
return res;
}
void mk_magic_sets::create_magic_rules(app * head, unsigned tail_cnt, app * const * tail, bool const* negated) {
//TODO: maybe include relevant interpreted predicates from the original rule
ptr_vector<app> new_tail;
svector<bool> negations;
new_tail.push_back(create_magic_literal(head));
new_tail.append(tail_cnt, tail);
negations.push_back(false);
negations.append(tail_cnt, negated);
for(unsigned i=0; i<tail_cnt; i++) {
if(m_extentional.contains(tail[i]->get_decl())) {
continue;
}
app * mag_head = create_magic_literal(tail[i]);
rule * r = m_context.get_rule_manager().mk(mag_head, i+1, new_tail.c_ptr(), negations.c_ptr());
TRACE("dl", r->display(m_context,tout); );
m_rules.push_back(r);
}
}
void mk_magic_sets::transform_rule(const adornment & head_adornment, rule * r) {
app * head = r->get_head();
unsigned head_len = head->get_num_args();
SASSERT(head_len==head_adornment.size());
var_idx_set bound_vars;
for(unsigned i=0; i<head_len; i++) {
expr * arg = head->get_arg(i);
if(head_adornment[i]==AD_BOUND && is_var(arg)) {
bound_vars.insert(to_var(arg)->get_idx());
}
}
unsigned processed_tail_len = r->get_uninterpreted_tail_size();
unsigned_vector exten_tails;
unsigned_vector inten_tails;
for(unsigned i=0; i<processed_tail_len; i++) {
app * t = r->get_tail(i);
if(m_extentional.contains(t->get_decl())) {
exten_tails.push_back(i);
}
else {
inten_tails.push_back(i);
}
}
ptr_vector<app> new_tail;
svector<bool> negations;
while(new_tail.size()!=processed_tail_len) {
bool intentional = false;
int curr_index = pop_bound(exten_tails, r, bound_vars);
if(curr_index==-1) {
curr_index = pop_bound(inten_tails, r,bound_vars);
if(curr_index!=-1) {
intentional = true;
}
}
if(curr_index==-1) {
if(!exten_tails.empty()) {
curr_index = exten_tails.back();
exten_tails.pop_back();
}
else {
SASSERT(!inten_tails.empty());
curr_index = inten_tails.back();
inten_tails.pop_back();
intentional = true;
}
}
SASSERT(curr_index!=-1);
app * curr = r->get_tail(curr_index);
if(intentional) {
curr = adorn_literal(curr, bound_vars);
}
new_tail.push_back(curr);
negations.push_back(r->is_neg_tail(curr_index));
collect_vars(m_manager, curr, bound_vars);
}
func_decl * new_head_pred;
VERIFY( m_adorned_preds.find(adornment_desc(head->get_decl(), head_adornment), new_head_pred) );
app * new_head = m_manager.mk_app(new_head_pred, head->get_args());
SASSERT(new_tail.size()==r->get_uninterpreted_tail_size());
create_magic_rules(new_head, new_tail.size(), new_tail.c_ptr(), negations.c_ptr());
unsigned tail_len = r->get_tail_size();
for(unsigned i=processed_tail_len; i<tail_len; i++) {
new_tail.push_back(r->get_tail(i));
negations.push_back(r->is_neg_tail(i));
}
new_tail.push_back(create_magic_literal(new_head));
negations.push_back(false);
rule * nr = m_context.get_rule_manager().mk(new_head, new_tail.size(), new_tail.c_ptr(), negations.c_ptr());
m_rules.push_back(nr);
nr->set_accounting_parent_object(m_context, r);
}
void mk_magic_sets::create_transfer_rule(const adornment_desc & d) {
func_decl * adn_pred;
TRUSTME( m_adorned_preds.find(d, adn_pred) );
unsigned arity = adn_pred->get_arity();
SASSERT(arity==d.m_pred->get_arity());
ptr_vector<expr> args;
for(unsigned i=0; i<arity; i++) {
args.push_back(m_manager.mk_var(i, adn_pred->get_domain(i)));
}
app * lit = m_manager.mk_app(d.m_pred, args.c_ptr());
app * adn_lit = m_manager.mk_app(adn_pred, args.c_ptr());
app * mag_lit = create_magic_literal(adn_lit);
app * tail[] = {lit, mag_lit};
rule * r = m_context.get_rule_manager().mk(adn_lit, 2, tail, 0);
m_rules.push_back(r);
}
rule_set * mk_magic_sets::operator()(rule_set const & source, model_converter_ref& mc, proof_converter_ref& pc) {
SASSERT(!mc && !pc);
unsigned init_rule_cnt = source.get_num_rules();
{
func_decl_set intentional;
for(unsigned i=0; i<init_rule_cnt; i++) {
intentional.insert(source.get_rule(i)->get_head()->get_decl());
}
//now we iterate through all predicates and collect the set of extentional ones
const rule_dependencies * deps;
rule_dependencies computed_deps(m_context);
if(source.is_closed()) {
deps = &source.get_dependencies();
}
else {
computed_deps.populate(source);
deps = &computed_deps;
}
rule_dependencies::iterator it = deps->begin();
rule_dependencies::iterator end = deps->end();
for(; it!=end; ++it) {
func_decl * pred = it->m_key;
if(intentional.contains(pred)) {
continue;
}
SASSERT(it->m_value->empty());//extentional predicates have no dependency
m_extentional.insert(pred);
}
}
SASSERT(m_rules.empty());
app * goal_head = m_goal_rule->get_head();
//adornment goal_adn;
//goal_adn.populate(goal_head, );
var_idx_set empty_var_idx_set;
adorn_literal(goal_head, empty_var_idx_set);
while(!m_todo.empty()) {
adornment_desc task = m_todo.back();
m_todo.pop_back();
const rule_vector & pred_rules = source.get_predicate_rules(task.m_pred);
rule_vector::const_iterator it = pred_rules.begin();
rule_vector::const_iterator end = pred_rules.end();
for(; it!=end; ++it) {
rule * r = *it;
transform_rule(task.m_adornment, r);
}
if(!m_context.get_relation(task.m_pred).empty()) {
//we need a rule to copy facts that are already in a relation into the adorned
//relation (since out intentional predicates can have facts, not only rules)
create_transfer_rule(task);
}
}
app * adn_goal_head = adorn_literal(goal_head, empty_var_idx_set);
app * mag_goal_head = create_magic_literal(adn_goal_head);
SASSERT(mag_goal_head->is_ground());
//SASSERT(is_fact(m_manager, mag_goal_head));
//m_context.add_fact(mag_goal_head);
rule * mag_goal_rule = m_context.get_rule_manager().mk(mag_goal_head, 0, 0, 0);
m_rules.push_back(mag_goal_rule);
rule * back_to_goal_rule = m_context.get_rule_manager().mk(goal_head, 1, &adn_goal_head, 0);
m_rules.push_back(back_to_goal_rule);
rule_set * result = static_cast<rule_set *>(0);
result = alloc(rule_set, m_context);
unsigned fin_rule_cnt = m_rules.size();
for(unsigned i=0; i<fin_rule_cnt; i++) {
result->add_rule(m_rules.get(i));
}
return result;
}
};