3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/lib/arith_decl_plugin.h
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

349 lines
13 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
arith_decl_plugin.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-01-09
Revision History:
--*/
#ifndef _ARITH_DECL_PLUGIN_H_
#define _ARITH_DECL_PLUGIN_H_
#include"ast.h"
class sexpr;
namespace algebraic_numbers {
class anum;
class manager;
};
enum arith_sort_kind {
REAL_SORT,
INT_SORT
};
enum arith_op_kind {
OP_NUM, // rational & integers
OP_IRRATIONAL_ALGEBRAIC_NUM, // irrationals that are roots of polynomials with integer coefficients
OP_LE,
OP_GE,
OP_LT,
OP_GT,
OP_ADD,
OP_SUB,
OP_UMINUS,
OP_MUL,
OP_DIV,
OP_IDIV,
OP_REM,
OP_MOD,
OP_TO_REAL,
OP_TO_INT,
OP_IS_INT,
OP_POWER,
// hyperbolic and trigonometric functions
OP_SIN,
OP_COS,
OP_TAN,
OP_ASIN,
OP_ACOS,
OP_ATAN,
OP_SINH,
OP_COSH,
OP_TANH,
OP_ASINH,
OP_ACOSH,
OP_ATANH,
// constants
OP_PI,
OP_E,
LAST_ARITH_OP
};
class arith_util;
class arith_decl_plugin : public decl_plugin {
protected:
struct algebraic_numbers_wrapper;
algebraic_numbers_wrapper * m_aw;
symbol m_intv_sym;
symbol m_realv_sym;
symbol m_rootv_sym;
sort * m_real_decl;
sort * m_int_decl;
func_decl * m_r_le_decl;
func_decl * m_r_ge_decl;
func_decl * m_r_lt_decl;
func_decl * m_r_gt_decl;
func_decl * m_r_add_decl;
func_decl * m_r_sub_decl;
func_decl * m_r_uminus_decl;
func_decl * m_r_mul_decl;
func_decl * m_r_div_decl;
func_decl * m_i_le_decl;
func_decl * m_i_ge_decl;
func_decl * m_i_lt_decl;
func_decl * m_i_gt_decl;
func_decl * m_i_add_decl;
func_decl * m_i_sub_decl;
func_decl * m_i_uminus_decl;
func_decl * m_i_mul_decl;
func_decl * m_i_div_decl;
func_decl * m_i_mod_decl;
func_decl * m_i_rem_decl;
func_decl * m_to_real_decl;
func_decl * m_to_int_decl;
func_decl * m_is_int_decl;
func_decl * m_r_power_decl;
func_decl * m_i_power_decl;
func_decl * m_sin_decl;
func_decl * m_cos_decl;
func_decl * m_tan_decl;
func_decl * m_asin_decl;
func_decl * m_acos_decl;
func_decl * m_atan_decl;
func_decl * m_sinh_decl;
func_decl * m_cosh_decl;
func_decl * m_tanh_decl;
func_decl * m_asinh_decl;
func_decl * m_acosh_decl;
func_decl * m_atanh_decl;
app * m_pi;
app * m_e;
ptr_vector<app> m_small_ints;
ptr_vector<app> m_small_reals;
func_decl * mk_func_decl(decl_kind k, bool is_real);
virtual void set_manager(ast_manager * m, family_id id);
decl_kind fix_kind(decl_kind k, unsigned arity);
func_decl * mk_num_decl(unsigned num_parameters, parameter const * parameters, unsigned arity);
public:
arith_decl_plugin();
virtual ~arith_decl_plugin();
virtual void finalize();
algebraic_numbers::manager & am();
algebraic_numbers_wrapper & aw();
virtual void del(parameter const & p);
virtual parameter translate(parameter const & p, decl_plugin & target);
virtual decl_plugin * mk_fresh() {
return alloc(arith_decl_plugin);
}
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters);
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned num_args, expr * const * args, sort * range);
virtual bool is_value(app* e) const;
virtual bool are_distinct(app* a, app* b) const;
virtual void get_op_names(svector<builtin_name> & op_names, symbol const & logic);
virtual void get_sort_names(svector<builtin_name> & sort_names, symbol const & logic);
app * mk_numeral(rational const & n, bool is_int);
app * mk_numeral(algebraic_numbers::anum const & val, bool is_int);
// Create a (real) numeral that is the i-th root of the polynomial encoded using the given sexpr.
app * mk_numeral(sexpr const * p, unsigned i);
app * mk_pi() const { return m_pi; }
app * mk_e() const { return m_e; }
virtual expr * get_some_value(sort * s);
void set_cancel(bool f);
};
class arith_util {
ast_manager & m_manager;
family_id m_afid;
arith_decl_plugin * m_plugin;
void init_plugin();
arith_decl_plugin & plugin() const {
if (!m_plugin) const_cast<arith_util*>(this)->init_plugin();
SASSERT(m_plugin != 0);
return *m_plugin;
}
public:
arith_util(ast_manager & m);
ast_manager & get_manager() const { return m_manager; }
family_id get_family_id() const { return m_afid; }
algebraic_numbers::manager & am() {
return plugin().am();
}
bool is_arith_expr(expr const * n) const { return is_app(n) && to_app(n)->get_family_id() == m_afid; }
bool is_numeral(expr const * n, rational & val, bool & is_int) const;
bool is_numeral(expr const * n, rational & val) const { bool is_int; return is_numeral(n, val, is_int); }
bool is_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_NUM); }
bool is_irrational_algebraic_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_IRRATIONAL_ALGEBRAIC_NUM); }
bool is_irrational_algebraic_numeral(expr const * n, algebraic_numbers::anum & val);
algebraic_numbers::anum const & to_irrational_algebraic_numeral(expr const * n);
bool is_zero(expr const * n) const { rational val; return is_numeral(n, val) && val.is_zero(); }
bool is_minus_one(expr * n) const { rational tmp; return is_numeral(n, tmp) && tmp.is_minus_one(); }
// return true if \c n is a term of the form (* -1 r)
bool is_times_minus_one(expr * n, expr * & r) const {
if (is_mul(n) && to_app(n)->get_num_args() == 2 && is_minus_one(to_app(n)->get_arg(0))) {
r = to_app(n)->get_arg(1);
return true;
}
return false;
}
bool is_le(expr const * n) const { return is_app_of(n, m_afid, OP_LE); }
bool is_ge(expr const * n) const { return is_app_of(n, m_afid, OP_GE); }
bool is_lt(expr const * n) const { return is_app_of(n, m_afid, OP_LT); }
bool is_gt(expr const * n) const { return is_app_of(n, m_afid, OP_GT); }
bool is_add(expr const * n) const { return is_app_of(n, m_afid, OP_ADD); }
bool is_sub(expr const * n) const { return is_app_of(n, m_afid, OP_SUB); }
bool is_uminus(expr const * n) const { return is_app_of(n, m_afid, OP_UMINUS); }
bool is_mul(expr const * n) const { return is_app_of(n, m_afid, OP_MUL); }
bool is_div(expr const * n) const { return is_app_of(n, m_afid, OP_DIV); }
bool is_idiv(expr const * n) const { return is_app_of(n, m_afid, OP_IDIV); }
bool is_mod(expr const * n) const { return is_app_of(n, m_afid, OP_MOD); }
bool is_rem(expr const * n) const { return is_app_of(n, m_afid, OP_REM); }
bool is_to_real(expr const * n) const { return is_app_of(n, m_afid, OP_TO_REAL); }
bool is_to_int(expr const * n) const { return is_app_of(n, m_afid, OP_TO_INT); }
bool is_is_int(expr const * n) const { return is_app_of(n, m_afid, OP_IS_INT); }
bool is_power(expr const * n) const { return is_app_of(n, m_afid, OP_POWER); }
bool is_int(sort const * s) const { return is_sort_of(s, m_afid, INT_SORT); }
bool is_int(expr const * n) const { return is_int(m_manager.get_sort(n)); }
bool is_real(sort const * s) const { return is_sort_of(s, m_afid, REAL_SORT); }
bool is_real(expr const * n) const { return is_real(m_manager.get_sort(n)); }
bool is_int_real(sort const * s) const { return s->get_family_id() == m_afid; }
bool is_int_real(expr const * n) const { return is_int_real(m_manager.get_sort(n)); }
MATCH_UNARY(is_uminus);
MATCH_BINARY(is_sub);
MATCH_BINARY(is_add);
MATCH_BINARY(is_mul);
MATCH_BINARY(is_le);
MATCH_BINARY(is_ge);
MATCH_BINARY(is_lt);
MATCH_BINARY(is_gt);
MATCH_BINARY(is_mod);
MATCH_BINARY(is_rem);
MATCH_BINARY(is_div);
MATCH_BINARY(is_idiv);
sort * mk_int() { return m_manager.mk_sort(m_afid, INT_SORT); }
sort * mk_real() { return m_manager.mk_sort(m_afid, REAL_SORT); }
app * mk_numeral(rational const & val, bool is_int) const {
return plugin().mk_numeral(val, is_int);
}
app * mk_numeral(rational const & val, sort const * s) const {
SASSERT(is_int(s) || is_real(s));
return mk_numeral(val, is_int(s));
}
app * mk_numeral(algebraic_numbers::anum const & val, bool is_int) {
return plugin().mk_numeral(val, is_int);
}
app * mk_numeral(sexpr const * p, unsigned i) {
return plugin().mk_numeral(p, i);
}
app * mk_le(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LE, arg1, arg2); }
app * mk_ge(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_GE, arg1, arg2); }
app * mk_lt(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LT, arg1, arg2); }
app * mk_gt(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_GT, arg1, arg2); }
app * mk_add(unsigned num_args, expr * const * args) { return m_manager.mk_app(m_afid, OP_ADD, num_args, args); }
app * mk_add(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_ADD, arg1, arg2); }
app * mk_add(expr * arg1, expr * arg2, expr* arg3) { return m_manager.mk_app(m_afid, OP_ADD, arg1, arg2, arg3); }
app * mk_sub(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_SUB, arg1, arg2); }
app * mk_sub(unsigned num_args, expr * const * args) { return m_manager.mk_app(m_afid, OP_SUB, num_args, args); }
app * mk_mul(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_MUL, arg1, arg2); }
app * mk_mul(expr * arg1, expr * arg2, expr* arg3) { return m_manager.mk_app(m_afid, OP_MUL, arg1, arg2, arg3); }
app * mk_mul(unsigned num_args, expr * const * args) { return m_manager.mk_app(m_afid, OP_MUL, num_args, args); }
app * mk_uminus(expr * arg) { return m_manager.mk_app(m_afid, OP_UMINUS, arg); }
app * mk_div(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_DIV, arg1, arg2); }
app * mk_idiv(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_IDIV, arg1, arg2); }
app * mk_rem(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_REM, arg1, arg2); }
app * mk_mod(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_MOD, arg1, arg2); }
app * mk_to_real(expr * arg1) { return m_manager.mk_app(m_afid, OP_TO_REAL, arg1); }
app * mk_to_int(expr * arg1) { return m_manager.mk_app(m_afid, OP_TO_INT, arg1); }
app * mk_is_int(expr * arg1) { return m_manager.mk_app(m_afid, OP_IS_INT, arg1); }
app * mk_power(expr* arg1, expr* arg2) { return m_manager.mk_app(m_afid, OP_POWER, arg1, arg2); }
app * mk_sin(expr * arg) { return m_manager.mk_app(m_afid, OP_SIN, arg); }
app * mk_cos(expr * arg) { return m_manager.mk_app(m_afid, OP_COS, arg); }
app * mk_tan(expr * arg) { return m_manager.mk_app(m_afid, OP_TAN, arg); }
app * mk_asin(expr * arg) { return m_manager.mk_app(m_afid, OP_ASIN, arg); }
app * mk_acos(expr * arg) { return m_manager.mk_app(m_afid, OP_ACOS, arg); }
app * mk_atan(expr * arg) { return m_manager.mk_app(m_afid, OP_ATAN, arg); }
app * mk_sinh(expr * arg) { return m_manager.mk_app(m_afid, OP_SINH, arg); }
app * mk_cosh(expr * arg) { return m_manager.mk_app(m_afid, OP_COSH, arg); }
app * mk_tanh(expr * arg) { return m_manager.mk_app(m_afid, OP_TANH, arg); }
app * mk_asinh(expr * arg) { return m_manager.mk_app(m_afid, OP_ASINH, arg); }
app * mk_acosh(expr * arg) { return m_manager.mk_app(m_afid, OP_ACOSH, arg); }
app * mk_atanh(expr * arg) { return m_manager.mk_app(m_afid, OP_ATANH, arg); }
bool is_pi(expr * arg) { return is_app_of(arg, m_afid, OP_PI); }
bool is_e(expr * arg) { return is_app_of(arg, m_afid, OP_E); }
app * mk_pi() { return plugin().mk_pi(); }
app * mk_e() { return plugin().mk_e(); }
/**
\brief Return the equality (= lhs rhs), but it makes sure that
if one of the arguments is a numeral, then it will be in the right-hand-side;
if none of them are numerals, then the left-hand-side has a smaller id than the right hand side.
*/
app * mk_eq(expr * lhs, expr * rhs) {
if (is_numeral(lhs) || (!is_numeral(rhs) && lhs->get_id() > rhs->get_id()))
std::swap(lhs, rhs);
if (lhs == rhs)
return m_manager.mk_true();
if (is_numeral(lhs) && is_numeral(rhs)) {
SASSERT(lhs != rhs);
return m_manager.mk_false();
}
return m_manager.mk_eq(lhs, rhs);
}
void set_cancel(bool f) {
plugin().set_cancel(f);
}
};
#endif /* _ARITH_DECL_PLUGIN_H_ */