3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 01:54:08 +00:00
z3/src/ast/euf/euf_egraph.cpp
Nikolaj Bjorner 116390833b prepare for theory plugins
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-09-02 10:42:18 -07:00

511 lines
17 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
euf_egraph.cpp
Abstract:
E-graph layer
Author:
Nikolaj Bjorner (nbjorner) 2020-08-23
--*/
#include "ast/euf/euf_egraph.h"
#include "ast/ast_pp.h"
#include "ast/ast_translation.h"
namespace euf {
/**
\brief Trail for add_th_var
*/
class add_th_var_trail : public trail<egraph> {
enode * m_enode;
theory_id m_th_id;
public:
add_th_var_trail(enode * n, theory_id th_id):
m_enode(n),
m_th_id(th_id) {
}
void undo(egraph & ctx) override {
theory_var v = m_enode->get_th_var(m_th_id);
SASSERT(v != null_theory_var);
m_enode->del_th_var(m_th_id);
enode * root = m_enode->get_root();
if (root != m_enode && root->get_th_var(m_th_id) == v)
root->del_th_var(m_th_id);
}
};
/**
\brief Trail for replace_th_var
*/
class replace_th_var_trail : public trail<egraph> {
enode * m_enode;
unsigned m_th_id:8;
unsigned m_old_th_var:24;
public:
replace_th_var_trail(enode * n, theory_id th_id, theory_var old_var):
m_enode(n),
m_th_id(th_id),
m_old_th_var(old_var) {
}
void undo(egraph & ctx) override {
SASSERT(m_enode->get_th_var(m_th_id) != null_theory_var);
m_enode->replace_th_var(m_old_th_var, m_th_id);
}
};
void egraph::undo_eq(enode* r1, enode* n1, unsigned r2_num_parents) {
enode* r2 = r1->get_root();
r2->dec_class_size(r1->class_size());
std::swap(r1->m_next, r2->m_next);
auto begin = r2->begin_parents() + r2_num_parents, end = r2->end_parents();
for (auto it = begin; it != end; ++it)
m_table.erase(*it);
for (enode* c : enode_class(r1))
c->m_root = r1;
for (auto it = begin; it != end; ++it)
m_table.insert(*it);
r2->m_parents.shrink(r2_num_parents);
unmerge_justification(n1);
}
enode* egraph::mk_enode(expr* f, unsigned num_args, enode * const* args) {
enode* n = enode::mk(m_region, f, num_args, args);
m_nodes.push_back(n);
m_exprs.push_back(f);
return n;
}
void egraph::reinsert(enode* n) {
unsigned num_parents = n->m_parents.size();
for (unsigned i = 0; i < num_parents; ++i) {
enode* p = n->m_parents[i];
if (is_equality(p)) {
reinsert_equality(p);
}
else {
auto rc = m_table.insert(p);
merge(rc.first, p, justification::congruence(rc.second));
if (inconsistent())
break;
}
}
}
void egraph::reinsert_equality(enode* p) {
SASSERT(is_equality(p));
if (p->get_arg(0)->get_root() == p->get_arg(1)->get_root()) {
m_new_lits.push_back(enode_bool_pair(p, true));
++m_stats.m_num_eqs;
}
}
bool egraph::is_equality(enode* p) const {
return m.is_eq(p->get_owner());
}
void egraph::force_push() {
for (; m_num_scopes > 0; --m_num_scopes) {
scope s;
s.m_inconsistent = m_inconsistent;
s.m_num_eqs = m_eqs.size();
s.m_num_nodes = m_nodes.size();
s.m_trail_sz = m_trail.size();
s.m_new_lits_sz = m_new_lits.size();
s.m_new_th_eqs_sz = m_new_th_eqs.size();
s.m_new_lits_qhead = m_new_lits_qhead;
s.m_new_th_eqs_qhead = m_new_th_eqs_qhead;
m_scopes.push_back(s);
m_region.push_scope();
}
}
void egraph::update_children(enode* n) {
for (enode* child : enode_args(n))
child->get_root()->add_parent(n);
n->set_update_children();
}
enode* egraph::mk(expr* f, unsigned num_args, enode *const* args) {
SASSERT(!find(f));
force_push();
enode *n = mk_enode(f, num_args, args);
SASSERT(n->class_size() == 1);
m_expr2enode.setx(f->get_id(), n, nullptr);
if (num_args == 0 && m.is_unique_value(f))
n->mark_interpreted();
if (num_args == 0)
return n;
if (is_equality(n)) {
update_children(n);
return n;
}
enode_bool_pair p = m_table.insert(n);
enode* r = p.first;
if (r == n) {
update_children(n);
}
else {
SASSERT(r->get_owner() != n->get_owner());
merge_justification(n, r, justification::congruence(p.second));
std::swap(n->m_next, r->m_next);
n->m_root = r;
r->inc_class_size(n->class_size());
push_eq(n, n, r->num_parents());
}
return n;
}
egraph::~egraph() {
for (enode* n : m_nodes)
n->m_parents.finalize();
}
void egraph::add_th_var(enode* n, theory_var v, theory_id id) {
force_push();
theory_var w = n->get_th_var(id);
enode* r = n->get_root();
if (w == null_theory_var) {
n->add_th_var(v, id, m_region);
m_trail.push_back(new (m_region) add_th_var_trail(n, id));
if (r != n) {
theory_var u = r->get_th_var(id);
if (u == null_theory_var)
r->add_th_var(v, id, m_region);
else
m_new_th_eqs.push_back(th_eq(id, v, u, n, r));
}
}
else {
theory_var u = r->get_th_var(id);
SASSERT(u != v && u != null_theory_var);
n->replace_th_var(v, id);
m_trail.push_back(new (m_region) replace_th_var_trail(n, id, u));
m_new_th_eqs.push_back(th_eq(id, v, u, n, r));
}
}
void egraph::pop(unsigned num_scopes) {
if (num_scopes <= m_num_scopes) {
m_num_scopes -= num_scopes;
return;
}
num_scopes -= m_num_scopes;
unsigned old_lim = m_scopes.size() - num_scopes;
scope s = m_scopes[old_lim];
for (unsigned i = m_eqs.size(); i-- > s.m_num_eqs; ) {
auto const& p = m_eqs[i];
undo_eq(p.r1, p.n1, p.r2_num_parents);
}
for (unsigned i = m_nodes.size(); i-- > s.m_num_nodes; ) {
enode* n = m_nodes[i];
if (n->num_args() > 1)
m_table.erase(n);
m_expr2enode[n->get_owner_id()] = nullptr;
n->~enode();
}
undo_trail_stack<egraph>(*this, m_trail, s.m_trail_sz);
m_inconsistent = s.m_inconsistent;
m_new_lits_qhead = s.m_new_lits_qhead;
m_new_th_eqs_qhead = s.m_new_th_eqs_qhead;
m_eqs.shrink(s.m_num_eqs);
m_nodes.shrink(s.m_num_nodes);
m_exprs.shrink(s.m_num_nodes);
m_new_lits.shrink(s.m_new_lits_sz);
m_new_th_eqs.shrink(s.m_new_th_eqs_sz);
m_scopes.shrink(old_lim);
m_region.pop_scope(num_scopes);
}
void egraph::merge(enode* n1, enode* n2, justification j) {
SASSERT(m.get_sort(n1->get_owner()) == m.get_sort(n2->get_owner()));
TRACE("euf", tout << n1->get_owner_id() << " == " << n2->get_owner_id() << "\n";);
force_push();
enode* r1 = n1->get_root();
enode* r2 = n2->get_root();
if (r1 == r2)
return;
++m_stats.m_num_merge;
if (r1->interpreted() && r2->interpreted()) {
set_conflict(n1, n2, j);
return;
}
if ((r1->class_size() > r2->class_size() && !r2->interpreted()) || r1->interpreted()) {
std::swap(r1, r2);
std::swap(n1, n2);
}
if ((m.is_true(r2->get_owner()) || m.is_false(r2->get_owner())) && j.is_congruence()) {
m_new_lits.push_back(enode_pair(n1, false));
++m_stats.m_num_lits;
}
for (enode* p : enode_parents(n1))
m_table.erase(p);
for (enode* p : enode_parents(n2))
m_table.erase(p);
push_eq(r1, n1, r2->num_parents());
merge_justification(n1, n2, j);
for (enode* c : enode_class(n1))
c->m_root = r2;
std::swap(r1->m_next, r2->m_next);
r2->inc_class_size(r1->class_size());
r2->m_parents.append(r1->m_parents);
merge_th_eq(r1, r2);
m_worklist.push_back(r2);
}
void egraph::merge_th_eq(enode* n, enode* root) {
SASSERT(n != root);
for (auto iv : enode_th_vars(n)) {
theory_id id = iv.get_id();
theory_var v = root->get_th_var(id);
if (v == null_theory_var) {
root->add_th_var(iv.get_var(), id, m_region);
m_trail.push_back(new (m_region) add_th_var_trail(root, id));
}
else {
SASSERT(v != iv.get_var());
m_new_th_eqs.push_back(th_eq(id, v, iv.get_var(), n, root));
}
}
}
bool egraph::propagate() {
SASSERT(m_num_scopes == 0 || m_worklist.empty());
unsigned head = 0, tail = m_worklist.size();
while (head < tail && m.limit().inc() && !inconsistent()) {
for (unsigned i = head; i < tail && !inconsistent(); ++i) {
enode* n = m_worklist[i]->get_root();
if (!n->is_marked1()) {
n->mark1();
m_worklist[i] = n;
reinsert(n);
}
}
for (unsigned i = head; i < tail; ++i)
m_worklist[i]->unmark1();
head = tail;
tail = m_worklist.size();
}
m_worklist.reset();
return
(m_new_lits_qhead < m_new_lits.size()) ||
(m_new_th_eqs_qhead < m_new_th_eqs.size()) ||
inconsistent();
}
void egraph::set_conflict(enode* n1, enode* n2, justification j) {
++m_stats.m_num_conflicts;
if (m_inconsistent)
return;
m_inconsistent = true;
m_n1 = n1;
m_n2 = n2;
m_justification = j;
}
void egraph::merge_justification(enode* n1, enode* n2, justification j) {
SASSERT(n1->reaches(n1->get_root()));
n1->reverse_justification();
n1->m_target = n2;
n1->m_justification = j;
SASSERT(n1->get_root()->reaches(n1));
}
void egraph::unmerge_justification(enode* n1) {
// r1 -> .. -> n1 -> n2 -> ... -> r2
// where n2 = n1->m_target
SASSERT(n1->get_root()->reaches(n1));
n1->m_target = nullptr;
n1->m_justification = justification::axiom();
n1->get_root()->reverse_justification();
// ---------------
// n1 -> ... -> r1
// n2 -> ... -> r2
SASSERT(n1->reaches(n1->get_root()));
SASSERT(n1->get_root()->m_target == nullptr);
}
/**
\brief generate an explanation for a congruence.
Each pair of children under a congruence have the same roots
and therefore have a least common ancestor. We only need
explanations up to the least common ancestors.
*/
void egraph::push_congruence(enode* n1, enode* n2, bool comm) {
SASSERT(is_app(n1->get_owner()));
SASSERT(n1->get_decl() == n2->get_decl());
if (m_used_cc)
m_used_cc(to_app(n1->get_owner()), to_app(n2->get_owner()));
if (comm &&
n1->get_arg(0)->get_root() == n2->get_arg(1)->get_root() &&
n1->get_arg(1)->get_root() == n2->get_arg(0)->get_root()) {
push_lca(n1->get_arg(0), n2->get_arg(1));
push_lca(n1->get_arg(1), n2->get_arg(0));
return;
}
for (unsigned i = 0; i < n1->num_args(); ++i)
push_lca(n1->get_arg(i), n2->get_arg(i));
}
enode* egraph::find_lca(enode* a, enode* b) {
SASSERT(a->get_root() == b->get_root());
a->mark2_targets<true>();
while (!b->is_marked2())
b = b->m_target;
a->mark2_targets<false>();
return b;
}
void egraph::push_to_lca(enode* n, enode* lca) {
while (n != lca) {
m_todo.push_back(n);
n = n->m_target;
}
}
void egraph::push_lca(enode* a, enode* b) {
enode* lca = find_lca(a, b);
push_to_lca(a, lca);
push_to_lca(b, lca);
}
void egraph::push_todo(enode* n) {
while (n) {
m_todo.push_back(n);
n = n->m_target;
}
}
template <typename T>
void egraph::explain(ptr_vector<T>& justifications) {
SASSERT(m_inconsistent);
SASSERT(m_todo.empty());
push_todo(m_n1);
push_todo(m_n2);
explain_eq(justifications, m_n1, m_n2, m_justification);
explain_todo(justifications);
}
template <typename T>
void egraph::explain_eq(ptr_vector<T>& justifications, enode* a, enode* b) {
SASSERT(m_todo.empty());
SASSERT(a->get_root() == b->get_root());
enode* lca = find_lca(a, b);
push_to_lca(a, lca);
push_to_lca(b, lca);
if (m_used_eq)
m_used_eq(a->get_owner(), b->get_owner(), lca->get_owner());
explain_todo(justifications);
}
template <typename T>
void egraph::explain_todo(ptr_vector<T>& justifications) {
for (unsigned i = 0; i < m_todo.size(); ++i) {
enode* n = m_todo[i];
if (n->m_target && !n->is_marked1()) {
n->mark1();
explain_eq(justifications, n, n->m_target, n->m_justification);
}
}
for (enode* n : m_todo)
n->unmark1();
m_todo.reset();
}
void egraph::invariant() {
for (enode* n : m_nodes)
n->invariant();
}
std::ostream& egraph::display(std::ostream& out, unsigned max_args, enode* n) const {
out << std::setw(5)
<< n->get_owner_id() << " := ";
if (!n->is_root())
out << "[" << n->get_root()->get_owner_id() << "] ";
expr* f = n->get_owner();
if (is_app(f))
out << to_app(f)->get_decl()->get_name() << " ";
else if (is_quantifier(f))
out << "q ";
else
out << "v ";
for (enode* arg : enode_args(n))
out << arg->get_owner_id() << " ";
for (unsigned i = n->num_args(); i < max_args; ++i)
out << " ";
out << "\t";
for (enode* p : enode_parents(n))
out << p->get_owner_id() << " ";
out << "\n";
return out;
}
std::ostream& egraph::display(std::ostream& out) const {
m_table.display(out);
unsigned max_args = 0;
for (enode* n : m_nodes)
max_args = std::max(max_args, n->num_args());
for (enode* n : m_nodes)
display(out, max_args, n);
return out;
}
void egraph::collect_statistics(statistics& st) const {
st.update("euf merge", m_stats.m_num_merge);
st.update("euf conflicts", m_stats.m_num_conflicts);
st.update("euf eq prop", m_stats.m_num_eqs);
st.update("euf lit prop", m_stats.m_num_lits);
}
void egraph::copy_from(egraph const& src, std::function<void*(void*)>& copy_justification) {
SASSERT(m_scopes.empty());
SASSERT(src.m_scopes.empty());
SASSERT(m_nodes.empty());
ptr_vector<enode> old_expr2new_enode, args;
ast_translation tr(src.m, m);
for (unsigned i = 0; i < src.m_nodes.size(); ++i) {
enode* n1 = src.m_nodes[i];
expr* e1 = src.m_exprs[i];
SASSERT(!n1->has_th_vars());
args.reset();
for (unsigned j = 0; j < n1->num_args(); ++j)
args.push_back(old_expr2new_enode[n1->get_arg(j)->get_owner_id()]);
expr* e2 = tr(e1);
enode* n2 = mk(e2, args.size(), args.c_ptr());
old_expr2new_enode.setx(e1->get_id(), n2, nullptr);
}
for (unsigned i = 0; i < src.m_nodes.size(); ++i) {
enode* n1 = src.m_nodes[i];
enode* n1t = n1->m_target;
enode* n2 = m_nodes[i];
enode* n2t = n1t ? old_expr2new_enode[n1->get_owner_id()] : nullptr;
SASSERT(!n1t || n2t);
SASSERT(!n1t || src.m.get_sort(n1->get_owner()) == src.m.get_sort(n1t->get_owner()));
SASSERT(!n1t || m.get_sort(n2->get_owner()) == m.get_sort(n2t->get_owner()));
if (n1t && n2->get_root() != n2t->get_root())
merge(n2, n2t, n1->m_justification.copy(copy_justification));
}
propagate();
}
}
template void euf::egraph::explain(ptr_vector<int>& justifications);
template void euf::egraph::explain_todo(ptr_vector<int>& justifications);
template void euf::egraph::explain_eq(ptr_vector<int>& justifications, enode* a, enode* b);
template void euf::egraph::explain(ptr_vector<unsigned>& justifications);
template void euf::egraph::explain_todo(ptr_vector<unsigned>& justifications);
template void euf::egraph::explain_eq(ptr_vector<unsigned>& justifications, enode* a, enode* b);