mirror of
https://github.com/Z3Prover/z3
synced 2025-05-11 09:44:43 +00:00
369 lines
12 KiB
C++
369 lines
12 KiB
C++
/*++
|
|
Copyright (c) 2021 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
Polysat core saturation
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2021-03-19
|
|
Jakob Rath 2021-04-6
|
|
|
|
|
|
TODO: preserve falsification
|
|
- each rule selects a certain premises that are problematic.
|
|
If the problematic premise is false under the current assignment, the newly inferred
|
|
literal should also be false in the assignment in order to preserve conflicts.
|
|
|
|
|
|
TODO: when we check that 'x' is "unary":
|
|
- in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet.
|
|
so for now we just allow the form 'value*variable'.
|
|
(extension to arbitrary monomials for 'x' should be fairly easy too)
|
|
|
|
--*/
|
|
#include "math/polysat/saturation.h"
|
|
#include "math/polysat/solver.h"
|
|
#include "math/polysat/log.h"
|
|
|
|
namespace polysat {
|
|
|
|
bool inf_saturate::perform(pvar v, conflict_core& core) {
|
|
for (auto c1 : core) {
|
|
if (!c1->is_ule())
|
|
continue;
|
|
auto c = c1.as_inequality();
|
|
if (try_ugt_x(v, core, c))
|
|
return true;
|
|
if (try_ugt_y(v, core, c))
|
|
return true;
|
|
if (try_ugt_z(v, core, c))
|
|
return true;
|
|
if (try_y_l_ax_and_x_l_z(v, core, c))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
signed_constraint inf_saturate::ineq(bool is_strict, pdd const& lhs, pdd const& rhs) {
|
|
if (is_strict)
|
|
return s().ult(lhs, rhs);
|
|
else
|
|
return s().ule(lhs, rhs);
|
|
}
|
|
|
|
/**
|
|
* Propagate c. It is added to reason and core all other literals in reason are false in current stack.
|
|
* The lemmas outlines in the rules are valid and therefore c is implied.
|
|
*/
|
|
bool inf_saturate::propagate(conflict_core& core, inequality const& crit, signed_constraint& c, clause_builder& reason) {
|
|
if (crit.as_signed_constraint().is_currently_false(s()) && c.is_currently_true(s()))
|
|
return false;
|
|
core.insert(c);
|
|
reason.push(c);
|
|
s().propagate_bool(c.blit(), reason.build().get());
|
|
core.remove(crit.as_signed_constraint()); // needs to be after propagation so we know it is propagated
|
|
return true;
|
|
}
|
|
|
|
bool inf_saturate::propagate(conflict_core& core, inequality const& crit, bool is_strict, pdd const& lhs, pdd const& rhs, clause_builder& reason) {
|
|
signed_constraint c = ineq(is_strict, lhs, rhs);
|
|
return propagate(core, crit, c, reason);
|
|
}
|
|
|
|
/// Add premises for Ω*(x, y)
|
|
void inf_saturate::push_omega_bisect(clause_builder& reason, pdd const& x, rational x_max, pdd const& y, rational y_max) {
|
|
rational x_val, y_val;
|
|
auto& pddm = x.manager();
|
|
unsigned bit_size = pddm.power_of_2();
|
|
rational bound = rational::power_of_two(bit_size);
|
|
VERIFY(s().try_eval(x, x_val));
|
|
VERIFY(s().try_eval(y, y_val));
|
|
SASSERT(x_val * y_val < bound);
|
|
|
|
rational x_lo = x_val, x_hi = x_max, y_lo = y_val, y_hi = y_max;
|
|
rational two(2);
|
|
while (x_lo < x_hi || y_lo < y_hi) {
|
|
rational x_mid = div(x_hi + x_lo, two);
|
|
rational y_mid = div(y_hi + y_lo, two);
|
|
if (x_mid * y_mid >= bound)
|
|
x_hi = x_mid - 1, y_hi = y_mid - 1;
|
|
else
|
|
x_lo = x_mid, y_lo = y_mid;
|
|
}
|
|
SASSERT(x_hi == x_lo && y_hi == y_lo);
|
|
SASSERT(x_lo * y_lo < bound);
|
|
SASSERT((x_lo + 1) * (y_lo + 1) >= bound);
|
|
if ((x_lo + 1) * y_lo < bound) {
|
|
x_hi = x_max;
|
|
while (x_lo < x_hi) {
|
|
rational x_mid = div(x_hi + x_lo, two);
|
|
if (x_mid * y_lo >= bound)
|
|
x_hi = x_mid - 1;
|
|
else
|
|
x_lo = x_mid;
|
|
}
|
|
}
|
|
else if (x_lo * (y_lo + 1) < bound) {
|
|
y_hi = y_max;
|
|
while (y_lo < y_hi) {
|
|
rational y_mid = div(y_hi + y_lo, two);
|
|
if (y_mid * x_lo >= bound)
|
|
y_hi = y_mid - 1;
|
|
else
|
|
y_lo = y_mid;
|
|
}
|
|
}
|
|
SASSERT(x_lo * y_lo < bound);
|
|
SASSERT((x_lo + 1) * y_lo >= bound);
|
|
SASSERT(x_lo * (y_lo + 1) >= bound);
|
|
|
|
// inequalities are justified by current assignments to x, y
|
|
// conflict resolution should be able to pick up this as a valid justification.
|
|
// or we resort to the same extension as in the original mul_overflow code
|
|
// where we add explicit equality propagations from the current assignment.
|
|
auto c1 = s().ule(x, pddm.mk_val(x_lo));
|
|
auto c2 = s().ule(y, pddm.mk_val(y_lo));
|
|
reason.push(~c1);
|
|
reason.push(~c2);
|
|
}
|
|
|
|
// determine worst case upper bounds for x, y
|
|
// then extract premises for a non-worst-case bound.
|
|
void inf_saturate::push_omega(clause_builder& reason, pdd const& x, pdd const& y) {
|
|
auto& pddm = x.manager();
|
|
unsigned bit_size = pddm.power_of_2();
|
|
rational bound = rational::power_of_two(bit_size);
|
|
rational x_max = bound - 1;
|
|
rational y_max = bound - 1;
|
|
|
|
if (x.is_var())
|
|
x_max = s().m_viable.max_viable(x.var());
|
|
if (y.is_var())
|
|
y_max = s().m_viable.max_viable(y.var());
|
|
|
|
if (x_max * y_max >= bound)
|
|
push_omega_bisect(reason, x, x_max, y, y_max);
|
|
else {
|
|
for (auto c : s().m_cjust[y.var()])
|
|
reason.push(~c);
|
|
for (auto c : s().m_cjust[x.var()])
|
|
reason.push(~c);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Match [v] .. <= v
|
|
*/
|
|
bool inf_saturate::is_l_v(pvar v, inequality const& i) {
|
|
return i.rhs == s().var(v);
|
|
}
|
|
|
|
/*
|
|
* Match [v] v <= ...
|
|
*/
|
|
bool inf_saturate::is_g_v(pvar v, inequality const& i) {
|
|
return i.lhs == s().var(v);
|
|
}
|
|
|
|
/*
|
|
* Match [x] x <= y
|
|
*/
|
|
bool inf_saturate::is_x_l_Y(pvar x, inequality const& c, pdd& y) {
|
|
y = c.rhs;
|
|
return is_g_v(x, c);
|
|
}
|
|
|
|
/*
|
|
* Match [x] y <= a*x
|
|
*/
|
|
bool inf_saturate::is_Y_l_Ax(pvar x, inequality const& d, pdd& a, pdd& y) {
|
|
y = d.lhs;
|
|
return is_xY(x, d.rhs, a);
|
|
}
|
|
|
|
bool inf_saturate::verify_Y_l_Ax(pvar x, inequality const& d, pdd const& a, pdd const& y) {
|
|
return d.lhs == y && d.rhs == a * s().var(x);
|
|
}
|
|
|
|
/**
|
|
* Match [coeff*x] coeff*x*Y
|
|
*/
|
|
|
|
bool inf_saturate::is_coeffxY(pdd const& x, pdd const& p, pdd& y) {
|
|
pdd xy = x;
|
|
return x.is_unary() && p.try_div(x.hi().val(), xy) && xy.factor(x.var(), 1, y);
|
|
}
|
|
|
|
/**
|
|
* determine whether values of x * y is non-overflowing.
|
|
*/
|
|
bool inf_saturate::is_non_overflow(pdd const& x, pdd const& y) {
|
|
rational x_val, y_val;
|
|
auto& pddm = x.manager();
|
|
rational bound = rational::power_of_two(pddm.power_of_2());
|
|
return s().try_eval(x, x_val) && s().try_eval(y, y_val) && x_val * y_val < bound;
|
|
}
|
|
|
|
/**
|
|
* Match [v] v*x <= z*x with x a variable
|
|
*/
|
|
bool inf_saturate::is_Xy_l_XZ(pvar v, inequality const& c, pdd& x, pdd& z) {
|
|
return is_xY(v, c.lhs, x) && is_coeffxY(x, c.rhs, z);
|
|
}
|
|
|
|
bool inf_saturate::verify_Xy_l_XZ(pvar v, inequality const& c, pdd const& x, pdd const& z) {
|
|
return c.lhs == s().var(v) * x && c.rhs == z * x;
|
|
}
|
|
|
|
/**
|
|
* Match [z] yx <= zx with x a variable
|
|
*/
|
|
bool inf_saturate::is_YX_l_zX(pvar z, inequality const& c, pdd& x, pdd& y) {
|
|
return is_xY(z, c.rhs, x) && is_coeffxY(x, c.lhs, y);
|
|
}
|
|
|
|
bool inf_saturate::verify_YX_l_zX(pvar z, inequality const& c, pdd const& x, pdd const& y) {
|
|
return c.lhs == y * x && c.rhs == s().var(z) * x;
|
|
}
|
|
|
|
/**
|
|
* Match [x] xY <= xZ
|
|
*/
|
|
bool inf_saturate::is_xY_l_xZ(pvar x, inequality const& c, pdd& y, pdd& z) {
|
|
return is_xY(x, c.lhs, y) && is_xY(x, c.rhs, z);
|
|
}
|
|
|
|
/**
|
|
* Match xy = x * Y
|
|
*/
|
|
bool inf_saturate::is_xY(pvar x, pdd const& xy, pdd& y) {
|
|
return xy.degree(x) == 1 && xy.factor(x, 1, y);
|
|
}
|
|
|
|
/**
|
|
* Implement the inferences
|
|
* [x] zx > yx ==> Ω*(x,y) \/ z > y
|
|
* [x] yx <= zx ==> Ω*(x,y) \/ y <= z \/ x = 0
|
|
*/
|
|
bool inf_saturate::try_ugt_x(pvar v, conflict_core& core, inequality const& c) {
|
|
pdd x = s().var(v);
|
|
pdd y = x;
|
|
pdd z = x;
|
|
if (!is_xY_l_xZ(v, c, y, z))
|
|
return false;
|
|
if (!is_non_overflow(x, y))
|
|
return false;
|
|
if (!c.is_strict && s().get_value(v).is_zero())
|
|
return false;
|
|
|
|
clause_builder reason(s());
|
|
if (!c.is_strict)
|
|
reason.push(s().eq(x));
|
|
reason.push(~c.as_signed_constraint());
|
|
push_omega(reason, x, y);
|
|
return propagate(core, c, c.is_strict, y, z, reason);
|
|
}
|
|
|
|
/// [y] z' <= y /\ zx > yx ==> Ω*(x,y) \/ zx > z'x
|
|
/// [y] z' <= y /\ yx <= zx ==> Ω*(x,y) \/ z'x <= zx
|
|
bool inf_saturate::try_ugt_y(pvar v, conflict_core& core, inequality const& le_y, inequality const& yx_l_zx, pdd const& x, pdd const& z) {
|
|
pdd const y = s().var(v);
|
|
|
|
SASSERT(is_l_v(v, le_y));
|
|
SASSERT(verify_Xy_l_XZ(v, yx_l_zx, x, z));
|
|
if (!is_non_overflow(x, y))
|
|
return false;
|
|
|
|
pdd const& z_prime = le_y.lhs;
|
|
|
|
clause_builder reason(s());
|
|
reason.push(~le_y.as_signed_constraint());
|
|
reason.push(~yx_l_zx.as_signed_constraint());
|
|
push_omega(reason, x, y);
|
|
// z'x <= zx
|
|
return propagate(core, yx_l_zx, yx_l_zx.is_strict || le_y.is_strict, z_prime * x, z * x, reason);
|
|
}
|
|
|
|
bool inf_saturate::try_ugt_y(pvar v, conflict_core& core, inequality const& c) {
|
|
if (!is_l_v(v, c))
|
|
return false;
|
|
pdd x = s().var(v);
|
|
pdd z = x;
|
|
for (auto dd : core) {
|
|
if (!dd->is_ule())
|
|
continue;
|
|
auto d = dd.as_inequality();
|
|
if (is_Xy_l_XZ(v, d, x, z) && try_ugt_y(v, core, c, d, x, z))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// [x] y <= ax /\ x <= z (non-overflow case)
|
|
/// ==> Ω*(a, z) \/ y <= az
|
|
bool inf_saturate::try_y_l_ax_and_x_l_z(pvar x, conflict_core& core, inequality const& c) {
|
|
if (!is_g_v(x, c))
|
|
return false;
|
|
pdd y = s().var(x);
|
|
pdd a = y;
|
|
for (auto dd : core) {
|
|
if (!dd->is_ule())
|
|
continue;
|
|
auto d = dd.as_inequality();
|
|
if (is_Y_l_Ax(x, d, a, y) && try_y_l_ax_and_x_l_z(x, core, c, d, a, y))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool inf_saturate::try_y_l_ax_and_x_l_z(pvar x, conflict_core& core, inequality const& x_l_z, inequality const& y_l_ax, pdd const& a, pdd const& y) {
|
|
|
|
SASSERT(is_g_v(x, x_l_z));
|
|
SASSERT(verify_Y_l_Ax(x, y_l_ax, a, y));
|
|
pdd z = x_l_z.rhs;
|
|
if (!is_non_overflow(a, z))
|
|
return false;
|
|
clause_builder reason(s());
|
|
reason.push(~x_l_z.as_signed_constraint());
|
|
reason.push(~y_l_ax.as_signed_constraint());
|
|
push_omega(reason, a, z);
|
|
return propagate(core, y_l_ax, x_l_z.is_strict || y_l_ax.is_strict, y, a * z, reason);
|
|
}
|
|
|
|
|
|
/// [z] z <= y' /\ zx > yx ==> Ω*(x,y') \/ y'x > yx
|
|
/// [z] z <= y' /\ yx <= zx ==> Ω*(x,y') \/ yx <= y'x
|
|
bool inf_saturate::try_ugt_z(pvar z, conflict_core& core, inequality const& c) {
|
|
if (!is_g_v(z, c))
|
|
return false;
|
|
pdd y = s().var(z);
|
|
pdd x = y;
|
|
for (auto dd : core) {
|
|
if (!dd->is_ule())
|
|
continue;
|
|
auto d = dd.as_inequality();
|
|
if (is_YX_l_zX(z, d, x, y) && try_ugt_z(z, core, c, d, x, y))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool inf_saturate::try_ugt_z(pvar z, conflict_core& core, inequality const& c, inequality const& d, pdd const& x, pdd const& y) {
|
|
SASSERT(is_g_v(z, c));
|
|
SASSERT(verify_YX_l_zX(z, d, x, y));
|
|
pdd const& y_prime = c.rhs;
|
|
if (!is_non_overflow(x, y_prime))
|
|
return false;
|
|
clause_builder reason(s());
|
|
reason.push(~c.as_signed_constraint());
|
|
reason.push(~d.as_signed_constraint());
|
|
push_omega(reason, x, y_prime);
|
|
// yx <= y'x
|
|
return propagate(core, d, c.is_strict || d.is_strict, y * x, y_prime * x, reason);
|
|
}
|
|
|
|
|
|
}
|