mirror of
				https://github.com/Z3Prover/z3
				synced 2025-11-04 05:19:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			400 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			400 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from z3 import *
 | 
						|
import heapq
 | 
						|
 | 
						|
 | 
						|
# Simplistic (and fragile) converter from
 | 
						|
# a class of Horn clauses corresponding to 
 | 
						|
# a transition system into a transition system
 | 
						|
# representation as <init, trans, goal>
 | 
						|
# It assumes it is given three Horn clauses
 | 
						|
# of the form:
 | 
						|
#  init(x) => Invariant(x)
 | 
						|
#  Invariant(x) and trans(x,x') => Invariant(x')
 | 
						|
#  Invariant(x) and goal(x) => Goal(x)
 | 
						|
# where Invariant and Goal are uninterpreted predicates
 | 
						|
    
 | 
						|
class Horn2Transitions:
 | 
						|
    def __init__(self):
 | 
						|
        self.trans = True
 | 
						|
        self.init = True
 | 
						|
        self.inputs = []
 | 
						|
        self.goal = True
 | 
						|
        self.index = 0
 | 
						|
        
 | 
						|
    def parse(self, file):
 | 
						|
        fp = Fixedpoint()
 | 
						|
        goals = fp.parse_file(file)
 | 
						|
        for r in fp.get_rules():
 | 
						|
            if not is_quantifier(r):
 | 
						|
                continue
 | 
						|
            b = r.body()
 | 
						|
            if not is_implies(b):
 | 
						|
                continue
 | 
						|
            f = b.arg(0)
 | 
						|
            g = b.arg(1)
 | 
						|
            if self.is_goal(f, g):
 | 
						|
                continue
 | 
						|
            if self.is_transition(f, g):
 | 
						|
                continue
 | 
						|
            if self.is_init(f, g):
 | 
						|
                continue
 | 
						|
 | 
						|
    def is_pred(self, p, name):
 | 
						|
        return is_app(p) and p.decl().name() == name
 | 
						|
    
 | 
						|
    def is_goal(self, body, head):
 | 
						|
        if not self.is_pred(head, "Goal"):
 | 
						|
            return False
 | 
						|
        pred, inv = self.is_body(body)
 | 
						|
        if pred is None:
 | 
						|
            return False
 | 
						|
        self.goal = self.subst_vars("x", inv, pred)
 | 
						|
        self.goal = self.subst_vars("i", self.goal, self.goal)
 | 
						|
        self.inputs += self.vars
 | 
						|
        self.inputs = list(set(self.inputs))
 | 
						|
        return True
 | 
						|
 | 
						|
    def is_body(self, body):
 | 
						|
        if not is_and(body):
 | 
						|
            return None, None
 | 
						|
        fmls = [f for f in body.children() if self.is_inv(f) is None]
 | 
						|
        inv = None
 | 
						|
        for f in body.children():
 | 
						|
            if self.is_inv(f) is not None:
 | 
						|
                inv = f;
 | 
						|
                break
 | 
						|
        return And(fmls), inv
 | 
						|
 | 
						|
    def is_inv(self, f):
 | 
						|
        if self.is_pred(f, "Invariant"):
 | 
						|
            return f
 | 
						|
        return None
 | 
						|
 | 
						|
    def is_transition(self, body, head):
 | 
						|
        pred, inv0 = self.is_body(body)
 | 
						|
        if pred is None:
 | 
						|
            return False
 | 
						|
        inv1 = self.is_inv(head)
 | 
						|
        if inv1 is None:
 | 
						|
            return False
 | 
						|
        pred = self.subst_vars("x",  inv0, pred)
 | 
						|
        self.xs = self.vars
 | 
						|
        pred = self.subst_vars("xn", inv1, pred)
 | 
						|
        self.xns = self.vars
 | 
						|
        pred = self.subst_vars("i", pred, pred)
 | 
						|
        self.inputs += self.vars
 | 
						|
        self.inputs = list(set(self.inputs))
 | 
						|
        self.trans = pred
 | 
						|
        return True
 | 
						|
 | 
						|
    def is_init(self, body, head):
 | 
						|
        for f in body.children():
 | 
						|
            if self.is_inv(f) is not None:
 | 
						|
               return False
 | 
						|
        inv = self.is_inv(head)
 | 
						|
        if inv is None:
 | 
						|
            return False
 | 
						|
        self.init = self.subst_vars("x", inv, body)
 | 
						|
        return True
 | 
						|
    
 | 
						|
    def subst_vars(self, prefix, inv, fml):
 | 
						|
        subst = self.mk_subst(prefix, inv)
 | 
						|
        self.vars = [ v for (k,v) in subst ]
 | 
						|
        return substitute(fml, subst)
 | 
						|
 | 
						|
    def mk_subst(self, prefix, inv):
 | 
						|
        self.index = 0
 | 
						|
        if self.is_inv(inv) is not None:
 | 
						|
            return [(f, self.mk_bool(prefix)) for f in inv.children()]
 | 
						|
        else:
 | 
						|
            vars = self.get_vars(inv)
 | 
						|
            return [(f, self.mk_bool(prefix)) for f in vars]
 | 
						|
 | 
						|
    def mk_bool(self, prefix):
 | 
						|
        self.index += 1
 | 
						|
        return Bool("%s%d" % (prefix, self.index))
 | 
						|
 | 
						|
    def get_vars(self, f, rs=[]):
 | 
						|
        if is_var(f):
 | 
						|
            return z3util.vset(rs + [f], str)
 | 
						|
        else:
 | 
						|
            for f_ in f.children():
 | 
						|
                rs = self.get_vars(f_, rs)
 | 
						|
            return z3util.vset(rs, str)
 | 
						|
 | 
						|
# Produce a finite domain solver.
 | 
						|
# The theory QF_FD covers bit-vector formulas
 | 
						|
# and pseudo-Boolean constraints.
 | 
						|
# By default cardinality and pseudo-Boolean 
 | 
						|
# constraints are converted to clauses. To override
 | 
						|
# this default for cardinality constraints
 | 
						|
# we set sat.cardinality.solver to True
 | 
						|
 | 
						|
def fd_solver():
 | 
						|
    s = SolverFor("QF_FD")
 | 
						|
    s.set("sat.cardinality.solver", True)
 | 
						|
    return s
 | 
						|
 | 
						|
 | 
						|
# negate, avoid double negation
 | 
						|
def negate(f):
 | 
						|
    if is_not(f):
 | 
						|
        return f.arg(0)
 | 
						|
    else:
 | 
						|
        return Not(f)
 | 
						|
 | 
						|
def cube2clause(cube):
 | 
						|
    return Or([negate(f) for f in cube])
 | 
						|
 | 
						|
class State:
 | 
						|
    def __init__(self, s):
 | 
						|
        self.R = set([])
 | 
						|
        self.solver = s
 | 
						|
 | 
						|
    def add(self, clause):
 | 
						|
        if clause not in self.R:
 | 
						|
           self.R |= { clause }
 | 
						|
           self.solver.add(clause)
 | 
						|
    
 | 
						|
class Goal:
 | 
						|
    def __init__(self, cube, parent, level):
 | 
						|
        self.level = level
 | 
						|
        self.cube = cube
 | 
						|
        self.parent = parent
 | 
						|
 | 
						|
    def __lt__(self, other):
 | 
						|
        return self.level < other.level
 | 
						|
 | 
						|
def is_seq(f):
 | 
						|
    return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
 | 
						|
 | 
						|
# Check if the initial state is bad
 | 
						|
def check_disjoint(a, b):
 | 
						|
    s = fd_solver()
 | 
						|
    s.add(a)
 | 
						|
    s.add(b)
 | 
						|
    return unsat == s.check()
 | 
						|
 | 
						|
 | 
						|
# Remove clauses that are subsumed
 | 
						|
def prune(R):
 | 
						|
    removed = set([])
 | 
						|
    s = fd_solver()
 | 
						|
    for f1 in R:
 | 
						|
        s.push()
 | 
						|
        for f2 in R:
 | 
						|
            if f2 not in removed:
 | 
						|
               s.add(Not(f2) if f1.eq(f2) else f2)
 | 
						|
        if s.check() == unsat:
 | 
						|
            removed |= { f1 }
 | 
						|
        s.pop()
 | 
						|
    return R - removed
 | 
						|
                
 | 
						|
class MiniIC3:
 | 
						|
    def __init__(self, init, trans, goal, x0, inputs, xn):
 | 
						|
        self.x0 = x0
 | 
						|
        self.inputs = inputs
 | 
						|
        self.xn = xn
 | 
						|
        self.init = init
 | 
						|
        self.bad = goal
 | 
						|
        self.trans = trans
 | 
						|
        self.min_cube_solver = fd_solver()
 | 
						|
        self.min_cube_solver.add(Not(trans))
 | 
						|
        self.goals = []
 | 
						|
        s = State(fd_solver())
 | 
						|
        s.add(init)
 | 
						|
        s.solver.add(trans)
 | 
						|
        self.states = [s]
 | 
						|
        self.s_bad = fd_solver()
 | 
						|
        self.s_good = fd_solver()
 | 
						|
        self.s_bad.add(self.bad)
 | 
						|
        self.s_good.add(Not(self.bad))        
 | 
						|
        
 | 
						|
    def next(self, f):
 | 
						|
        if is_seq(f):
 | 
						|
           return [self.next(f1) for f1 in f]
 | 
						|
        return substitute(f, [p for p in zip(self.x0, self.xn)])    
 | 
						|
    
 | 
						|
    def prev(self, f):
 | 
						|
        if is_seq(f):
 | 
						|
           return [self.prev(f1) for f1 in f]
 | 
						|
        return substitute(f, [p for p in zip(self.xn, self.x0)])    
 | 
						|
    
 | 
						|
    def add_solver(self):
 | 
						|
        s = fd_solver()
 | 
						|
        s.add(self.trans)
 | 
						|
        self.states += [State(s)]        
 | 
						|
 | 
						|
    def R(self, i):
 | 
						|
        return And(self.states[i].R)
 | 
						|
 | 
						|
    # Check if there are two states next to each other that have the same clauses.
 | 
						|
    def is_valid(self):
 | 
						|
        i = 1
 | 
						|
        while i + 1 < len(self.states):
 | 
						|
            if not (self.states[i].R - self.states[i+1].R):
 | 
						|
               return And(prune(self.states[i].R))
 | 
						|
            i += 1
 | 
						|
        return None
 | 
						|
 | 
						|
    def value2literal(self, m, x):
 | 
						|
        value = m.eval(x)
 | 
						|
        if is_true(value):
 | 
						|
            return x
 | 
						|
        if is_false(value):
 | 
						|
            return Not(x)
 | 
						|
        return None
 | 
						|
 | 
						|
    def values2literals(self, m, xs):
 | 
						|
        p = [self.value2literal(m, x) for x in xs]
 | 
						|
        return [x for x in p if x is not None]
 | 
						|
 | 
						|
    def project0(self, m):
 | 
						|
        return self.values2literals(m, self.x0)
 | 
						|
 | 
						|
    def projectI(self, m):
 | 
						|
        return self.values2literals(m, self.inputs)
 | 
						|
 | 
						|
    def projectN(self, m):
 | 
						|
        return self.values2literals(m, self.xn)
 | 
						|
 | 
						|
    # Determine if there is a cube for the current state 
 | 
						|
    # that is potentially reachable.
 | 
						|
    def unfold(self):
 | 
						|
        core = []
 | 
						|
        self.s_bad.push()
 | 
						|
        R = self.R(len(self.states)-1)
 | 
						|
        self.s_bad.add(R)
 | 
						|
        is_sat = self.s_bad.check()
 | 
						|
        if is_sat == sat:
 | 
						|
           m = self.s_bad.model()
 | 
						|
           cube = self.project0(m)
 | 
						|
           props = cube + self.projectI(m)
 | 
						|
           self.s_good.push()
 | 
						|
           self.s_good.add(R)
 | 
						|
           is_sat2 = self.s_good.check(props)
 | 
						|
           assert is_sat2 == unsat
 | 
						|
           core = self.s_good.unsat_core()
 | 
						|
           core = [c for c in core if c in set(cube)]
 | 
						|
           self.s_good.pop()
 | 
						|
        self.s_bad.pop()
 | 
						|
        return is_sat, core
 | 
						|
 | 
						|
    # Block a cube by asserting the clause corresponding to its negation
 | 
						|
    def block_cube(self, i, cube):
 | 
						|
        self.assert_clause(i, cube2clause(cube))
 | 
						|
 | 
						|
    # Add a clause to levels 0 until i
 | 
						|
    def assert_clause(self, i, clause):
 | 
						|
        for j in range(i + 1):
 | 
						|
            self.states[j].add(clause)
 | 
						|
 | 
						|
    # minimize cube that is core of Dual solver.
 | 
						|
    # this assumes that props & cube => Trans    
 | 
						|
    def minimize_cube(self, cube, inputs, lits):
 | 
						|
        is_sat = self.min_cube_solver.check(lits + [c for c in cube] + [i for i in inputs])
 | 
						|
        assert is_sat == unsat
 | 
						|
        core = self.min_cube_solver.unsat_core()
 | 
						|
        assert core
 | 
						|
        return [c for c in core if c in set(cube)]
 | 
						|
 | 
						|
    # push a goal on a heap
 | 
						|
    def push_heap(self, goal):
 | 
						|
        heapq.heappush(self.goals, (goal.level, goal))
 | 
						|
 | 
						|
    # A state s0 and level f0 such that
 | 
						|
    # not(s0) is f0-1 inductive
 | 
						|
    def ic3_blocked(self, s0, f0):
 | 
						|
        self.push_heap(Goal(self.next(s0), None, f0))
 | 
						|
        while self.goals:
 | 
						|
            f, g = heapq.heappop(self.goals)
 | 
						|
            sys.stdout.write("%d." % f)
 | 
						|
            sys.stdout.flush()
 | 
						|
            # Not(g.cube) is f-1 invariant
 | 
						|
            if f == 0:
 | 
						|
               print("")
 | 
						|
               return g
 | 
						|
            cube, f, is_sat = self.is_inductive(f, g.cube)
 | 
						|
            if is_sat == unsat:
 | 
						|
               self.block_cube(f, self.prev(cube))
 | 
						|
               if f < f0:
 | 
						|
                  self.push_heap(Goal(g.cube, g.parent, f + 1))
 | 
						|
            elif is_sat == sat:
 | 
						|
               self.push_heap(Goal(cube, g, f - 1))
 | 
						|
               self.push_heap(g)
 | 
						|
            else:
 | 
						|
               return is_sat
 | 
						|
        print("")
 | 
						|
        return None
 | 
						|
 | 
						|
    # Rudimentary generalization:
 | 
						|
    # If the cube is already unsat with respect to transition relation
 | 
						|
    # extract a core (not necessarily minimal)
 | 
						|
    # otherwise, just return the cube.
 | 
						|
    def generalize(self, cube, f):
 | 
						|
        s = self.states[f - 1].solver
 | 
						|
        if unsat == s.check(cube):
 | 
						|
            core = s.unsat_core()
 | 
						|
            if not check_disjoint(self.init, self.prev(And(core))):
 | 
						|
                return core, f
 | 
						|
        return cube, f
 | 
						|
 | 
						|
    # Check if the negation of cube is inductive at level f
 | 
						|
    def is_inductive(self, f, cube):
 | 
						|
        s = self.states[f - 1].solver
 | 
						|
        s.push()
 | 
						|
        s.add(self.prev(Not(And(cube))))
 | 
						|
        is_sat = s.check(cube)
 | 
						|
        if is_sat == sat:
 | 
						|
           m = s.model()
 | 
						|
        s.pop()
 | 
						|
        if is_sat == sat:
 | 
						|
           cube = self.next(self.minimize_cube(self.project0(m), self.projectI(m), self.projectN(m)))
 | 
						|
        elif is_sat == unsat:
 | 
						|
           cube, f = self.generalize(cube, f)
 | 
						|
        return cube, f, is_sat
 | 
						|
                        
 | 
						|
    def run(self):
 | 
						|
        if not check_disjoint(self.init, self.bad):
 | 
						|
           return "goal is reached in initial state"
 | 
						|
        level = 0
 | 
						|
        while True:
 | 
						|
            inv = self.is_valid()
 | 
						|
            if inv is not None:
 | 
						|
                return inv
 | 
						|
            is_sat, cube = self.unfold()
 | 
						|
            if is_sat == unsat:
 | 
						|
               level += 1
 | 
						|
               print("Unfold %d" % level)
 | 
						|
               sys.stdout.flush()
 | 
						|
               self.add_solver()
 | 
						|
            elif is_sat == sat:
 | 
						|
               cex = self.ic3_blocked(cube, level)
 | 
						|
               if cex is not None:
 | 
						|
                  return cex
 | 
						|
            else:
 | 
						|
               return is_sat  
 | 
						|
 | 
						|
def test(file):
 | 
						|
    h2t = Horn2Transitions()
 | 
						|
    h2t.parse(file)
 | 
						|
    mp = MiniIC3(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.inputs, h2t.xns)
 | 
						|
    result = mp.run()    
 | 
						|
    if isinstance(result, Goal):
 | 
						|
       g = result
 | 
						|
       print("Trace")
 | 
						|
       while g:
 | 
						|
          print(g.level, g.cube)
 | 
						|
          g = g.parent
 | 
						|
       return
 | 
						|
    if isinstance(result, ExprRef):
 | 
						|
       print("Invariant:\n%s " % result)
 | 
						|
       return
 | 
						|
    print(result)
 | 
						|
 | 
						|
test("data/horn1.smt2")
 | 
						|
test("data/horn2.smt2")
 | 
						|
test("data/horn3.smt2")
 | 
						|
test("data/horn4.smt2")
 | 
						|
test("data/horn5.smt2")
 | 
						|
# test("data/horn6.smt2") # takes long time to finish
 |