mirror of
https://github.com/Z3Prover/z3
synced 2025-04-12 12:08:18 +00:00
1510 lines
55 KiB
C++
1510 lines
55 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
seq_decl_plugin.h
|
|
|
|
Abstract:
|
|
|
|
decl_plugin for the theory of sequences
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2011-14-11
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include "ast/seq_decl_plugin.h"
|
|
#include "ast/arith_decl_plugin.h"
|
|
#include "ast/array_decl_plugin.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/bv_decl_plugin.h"
|
|
#include <sstream>
|
|
|
|
|
|
seq_decl_plugin::seq_decl_plugin(): m_init(false),
|
|
m_stringc_sym("String"),
|
|
m_string(nullptr),
|
|
m_char(nullptr),
|
|
m_reglan(nullptr),
|
|
m_has_re(false),
|
|
m_has_seq(false) {
|
|
}
|
|
|
|
void seq_decl_plugin::finalize() {
|
|
for (psig* s : m_sigs)
|
|
dealloc(s);
|
|
m_manager->dec_ref(m_string);
|
|
m_manager->dec_ref(m_char);
|
|
m_manager->dec_ref(m_reglan);
|
|
}
|
|
|
|
bool seq_decl_plugin::is_sort_param(sort* s, unsigned& idx) {
|
|
return
|
|
s->get_name().is_numerical() &&
|
|
(idx = s->get_name().get_num(), true);
|
|
}
|
|
|
|
bool seq_decl_plugin::match(ptr_vector<sort>& binding, sort* s, sort* sP) {
|
|
if (s == sP) return true;
|
|
unsigned idx;
|
|
if (is_sort_param(sP, idx)) {
|
|
if (binding.size() <= idx) binding.resize(idx+1);
|
|
if (binding[idx] && (binding[idx] != s)) return false;
|
|
binding[idx] = s;
|
|
return true;
|
|
}
|
|
|
|
|
|
if (s->get_family_id() == sP->get_family_id() &&
|
|
s->get_decl_kind() == sP->get_decl_kind() &&
|
|
s->get_num_parameters() == sP->get_num_parameters()) {
|
|
for (unsigned i = 0, sz = s->get_num_parameters(); i < sz; ++i) {
|
|
parameter const& p = s->get_parameter(i);
|
|
if (p.is_ast() && is_sort(p.get_ast())) {
|
|
parameter const& p2 = sP->get_parameter(i);
|
|
if (!match(binding, to_sort(p.get_ast()), to_sort(p2.get_ast()))) return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
else {
|
|
TRACE("seq", tout << "Could not match " << mk_pp(s, *m_manager) << " and " << mk_pp(sP, *m_manager) << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
\brief match right associative operator.
|
|
*/
|
|
void seq_decl_plugin::match_assoc(psig& sig, unsigned dsz, sort *const* dom, sort* range, sort_ref& range_out) {
|
|
ptr_vector<sort> binding;
|
|
ast_manager& m = *m_manager;
|
|
if (dsz == 0) {
|
|
std::ostringstream strm;
|
|
strm << "Unexpected number of arguments to '" << sig.m_name << "' ";
|
|
strm << "at least one argument expected " << dsz << " given";
|
|
m.raise_exception(strm.str());
|
|
}
|
|
bool is_match = true;
|
|
for (unsigned i = 0; is_match && i < dsz; ++i) {
|
|
SASSERT(dom[i]);
|
|
is_match = match(binding, dom[i], sig.m_dom.get(0));
|
|
}
|
|
if (range && is_match) {
|
|
is_match = match(binding, range, sig.m_range);
|
|
}
|
|
if (!is_match) {
|
|
std::ostringstream strm;
|
|
strm << "Sort of function '" << sig.m_name << "' ";
|
|
strm << "does not match the declared type. Given domain: ";
|
|
for (unsigned i = 0; i < dsz; ++i) {
|
|
strm << mk_pp(dom[i], m) << " ";
|
|
}
|
|
if (range) {
|
|
strm << " and range: " << mk_pp(range, m);
|
|
}
|
|
m.raise_exception(strm.str());
|
|
}
|
|
range_out = apply_binding(binding, sig.m_range);
|
|
SASSERT(range_out);
|
|
}
|
|
|
|
void seq_decl_plugin::match(psig& sig, unsigned dsz, sort *const* dom, sort* range, sort_ref& range_out) {
|
|
m_binding.reset();
|
|
ast_manager& m = *m_manager;
|
|
if (sig.m_dom.size() != dsz) {
|
|
std::ostringstream strm;
|
|
strm << "Unexpected number of arguments to '" << sig.m_name << "' ";
|
|
strm << sig.m_dom.size() << " arguments expected " << dsz << " given";
|
|
m.raise_exception(strm.str());
|
|
}
|
|
bool is_match = true;
|
|
for (unsigned i = 0; is_match && i < dsz; ++i) {
|
|
is_match = match(m_binding, dom[i], sig.m_dom[i].get());
|
|
}
|
|
if (range && is_match) {
|
|
is_match = match(m_binding, range, sig.m_range);
|
|
}
|
|
if (!is_match) {
|
|
std::ostringstream strm;
|
|
strm << "Sort of polymorphic function '" << sig.m_name << "' ";
|
|
strm << "does not match the declared type. ";
|
|
strm << "\nGiven domain: ";
|
|
for (unsigned i = 0; i < dsz; ++i) {
|
|
strm << mk_pp(dom[i], m) << " ";
|
|
}
|
|
if (range) {
|
|
strm << " and range: " << mk_pp(range, m);
|
|
}
|
|
strm << "\nExpected domain: ";
|
|
for (unsigned i = 0; i < dsz; ++i) {
|
|
strm << mk_pp(sig.m_dom[i].get(), m) << " ";
|
|
}
|
|
|
|
m.raise_exception(strm.str());
|
|
}
|
|
if (!range && dsz == 0) {
|
|
std::ostringstream strm;
|
|
strm << "Sort of polymorphic function '" << sig.m_name << "' ";
|
|
strm << "is ambiguous. Function takes no arguments and sort of range has not been constrained";
|
|
m.raise_exception(strm.str());
|
|
}
|
|
range_out = apply_binding(m_binding, sig.m_range);
|
|
SASSERT(range_out);
|
|
}
|
|
|
|
sort* seq_decl_plugin::apply_binding(ptr_vector<sort> const& binding, sort* s) {
|
|
unsigned i;
|
|
if (is_sort_param(s, i)) {
|
|
if (binding.size() <= i || !binding[i]) {
|
|
m_manager->raise_exception("Expecting type parameter to be bound");
|
|
}
|
|
return binding[i];
|
|
}
|
|
if (is_sort_of(s, m_family_id, SEQ_SORT) || is_sort_of(s, m_family_id, RE_SORT)) {
|
|
SASSERT(s->get_num_parameters() == 1);
|
|
SASSERT(s->get_parameter(0).is_ast());
|
|
SASSERT(is_sort(s->get_parameter(0).get_ast()));
|
|
sort* p = apply_binding(binding, to_sort(s->get_parameter(0).get_ast()));
|
|
parameter param(p);
|
|
if (p == m_char && s->get_decl_kind() == SEQ_SORT)
|
|
return m_string;
|
|
if (p == m_string && s->get_decl_kind() == RE_SORT)
|
|
return m_reglan;
|
|
return mk_sort(s->get_decl_kind(), 1, ¶m);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
void seq_decl_plugin::init() {
|
|
if (m_init) return;
|
|
ast_manager& m = *m_manager;
|
|
m_init = true;
|
|
sort* A = m.mk_uninterpreted_sort(symbol(0u));
|
|
sort* strT = m_string;
|
|
parameter paramA(A);
|
|
parameter paramS(strT);
|
|
sort* seqA = m.mk_sort(m_family_id, SEQ_SORT, 1, ¶mA);
|
|
parameter paramSA(seqA);
|
|
sort* reA = m.mk_sort(m_family_id, RE_SORT, 1, ¶mSA);
|
|
sort* reT = m.mk_sort(m_family_id, RE_SORT, 1, ¶mS);
|
|
sort* boolT = m.mk_bool_sort();
|
|
sort* intT = arith_util(m).mk_int();
|
|
sort* predA = array_util(m).mk_array_sort(A, boolT);
|
|
sort* seqAseqAseqA[3] = { seqA, seqA, seqA };
|
|
sort* seqAreAseqA[3] = { seqA, reA, seqA };
|
|
sort* seqAseqA[2] = { seqA, seqA };
|
|
sort* seqAreA[2] = { seqA, reA };
|
|
sort* reAreA[2] = { reA, reA };
|
|
sort* AreA[2] = { A, reA };
|
|
sort* seqAint2T[3] = { seqA, intT, intT };
|
|
sort* seq2AintT[3] = { seqA, seqA, intT };
|
|
sort* str2T[2] = { strT, strT };
|
|
sort* str3T[3] = { strT, strT, strT };
|
|
sort* strTint2T[3] = { strT, intT, intT };
|
|
sort* strTreT[2] = { strT, reT };
|
|
sort* str2TintT[3] = { strT, strT, intT };
|
|
sort* seqAintT[2] = { seqA, intT };
|
|
sort* seq3A[3] = { seqA, seqA, seqA };
|
|
m_sigs.resize(LAST_SEQ_OP);
|
|
// TBD: have (par ..) construct and load parameterized signature from premable.
|
|
m_sigs[OP_SEQ_UNIT] = alloc(psig, m, "seq.unit", 1, 1, &A, seqA);
|
|
m_sigs[OP_SEQ_EMPTY] = alloc(psig, m, "seq.empty", 1, 0, nullptr, seqA);
|
|
m_sigs[OP_SEQ_CONCAT] = alloc(psig, m, "seq.++", 1, 2, seqAseqA, seqA);
|
|
m_sigs[OP_SEQ_PREFIX] = alloc(psig, m, "seq.prefixof", 1, 2, seqAseqA, boolT);
|
|
m_sigs[OP_SEQ_SUFFIX] = alloc(psig, m, "seq.suffixof", 1, 2, seqAseqA, boolT);
|
|
m_sigs[OP_SEQ_CONTAINS] = alloc(psig, m, "seq.contains", 1, 2, seqAseqA, boolT);
|
|
m_sigs[OP_SEQ_EXTRACT] = alloc(psig, m, "seq.extract", 1, 3, seqAint2T, seqA);
|
|
m_sigs[OP_SEQ_REPLACE] = alloc(psig, m, "seq.replace", 1, 3, seq3A, seqA);
|
|
m_sigs[OP_SEQ_INDEX] = alloc(psig, m, "seq.indexof", 1, 3, seq2AintT, intT);
|
|
m_sigs[OP_SEQ_LAST_INDEX] = alloc(psig, m, "seq.last_indexof", 1, 2, seqAseqA, intT);
|
|
m_sigs[OP_SEQ_AT] = alloc(psig, m, "seq.at", 1, 2, seqAintT, seqA);
|
|
m_sigs[OP_SEQ_NTH] = alloc(psig, m, "seq.nth", 1, 2, seqAintT, A);
|
|
m_sigs[OP_SEQ_NTH_I] = alloc(psig, m, "seq.nth_i", 1, 2, seqAintT, A);
|
|
m_sigs[OP_SEQ_NTH_U] = alloc(psig, m, "seq.nth_u", 1, 2, seqAintT, A);
|
|
m_sigs[OP_SEQ_LENGTH] = alloc(psig, m, "seq.len", 1, 1, &seqA, intT);
|
|
m_sigs[OP_RE_PLUS] = alloc(psig, m, "re.+", 1, 1, &reA, reA);
|
|
m_sigs[OP_RE_STAR] = alloc(psig, m, "re.*", 1, 1, &reA, reA);
|
|
m_sigs[OP_RE_OPTION] = alloc(psig, m, "re.opt", 1, 1, &reA, reA);
|
|
m_sigs[OP_RE_RANGE] = alloc(psig, m, "re.range", 1, 2, seqAseqA, reA);
|
|
m_sigs[OP_RE_CONCAT] = alloc(psig, m, "re.++", 1, 2, reAreA, reA);
|
|
m_sigs[OP_RE_UNION] = alloc(psig, m, "re.union", 1, 2, reAreA, reA);
|
|
m_sigs[OP_RE_INTERSECT] = alloc(psig, m, "re.inter", 1, 2, reAreA, reA);
|
|
m_sigs[OP_RE_DIFF] = alloc(psig, m, "re.diff", 1, 2, reAreA, reA);
|
|
m_sigs[OP_RE_LOOP] = alloc(psig, m, "re.loop", 1, 1, &reA, reA);
|
|
m_sigs[OP_RE_POWER] = alloc(psig, m, "re.^", 1, 1, &reA, reA);
|
|
m_sigs[OP_RE_COMPLEMENT] = alloc(psig, m, "re.comp", 1, 1, &reA, reA);
|
|
m_sigs[OP_RE_EMPTY_SET] = alloc(psig, m, "re.empty", 1, 0, nullptr, reA);
|
|
m_sigs[OP_RE_FULL_SEQ_SET] = alloc(psig, m, "re.all", 1, 0, nullptr, reA);
|
|
m_sigs[OP_RE_FULL_CHAR_SET] = alloc(psig, m, "re.allchar", 1, 0, nullptr, reA);
|
|
m_sigs[OP_RE_OF_PRED] = alloc(psig, m, "re.of.pred", 1, 1, &predA, reA);
|
|
m_sigs[OP_RE_REVERSE] = alloc(psig, m, "re.reverse", 1, 1, &reA, reA);
|
|
m_sigs[OP_RE_DERIVATIVE] = alloc(psig, m, "re.derivative", 1, 2, AreA, reA);
|
|
m_sigs[_OP_RE_ANTIMOROV_UNION] = alloc(psig, m, "re.union", 1, 2, reAreA, reA);
|
|
m_sigs[OP_SEQ_TO_RE] = alloc(psig, m, "seq.to.re", 1, 1, &seqA, reA);
|
|
m_sigs[OP_SEQ_IN_RE] = alloc(psig, m, "seq.in.re", 1, 2, seqAreA, boolT);
|
|
m_sigs[OP_SEQ_REPLACE_RE_ALL] = alloc(psig, m, "str.replace_re_all", 1, 3, seqAreAseqA, seqA);
|
|
m_sigs[OP_SEQ_REPLACE_RE] = alloc(psig, m, "str.replace_re", 1, 3, seqAreAseqA, seqA);
|
|
m_sigs[OP_SEQ_REPLACE_ALL] = alloc(psig, m, "str.replace_all", 1, 3, seqAseqAseqA, seqA);
|
|
m_sigs[OP_STRING_CONST] = nullptr;
|
|
m_sigs[_OP_STRING_STRIDOF] = alloc(psig, m, "str.indexof", 0, 3, str2TintT, intT);
|
|
m_sigs[_OP_STRING_STRREPL] = alloc(psig, m, "str.replace", 0, 3, str3T, strT);
|
|
m_sigs[_OP_STRING_FROM_CHAR] = alloc(psig, m, "char", 1, 0, nullptr, strT);
|
|
m_sigs[OP_STRING_ITOS] = alloc(psig, m, "str.from_int", 0, 1, &intT, strT);
|
|
m_sigs[OP_STRING_STOI] = alloc(psig, m, "str.to_int", 0, 1, &strT, intT);
|
|
m_sigs[OP_STRING_LT] = alloc(psig, m, "str.<", 0, 2, str2T, boolT);
|
|
m_sigs[OP_STRING_LE] = alloc(psig, m, "str.<=", 0, 2, str2T, boolT);
|
|
m_sigs[OP_STRING_IS_DIGIT] = alloc(psig, m, "str.is_digit", 0, 1, &strT, boolT);
|
|
m_sigs[OP_STRING_TO_CODE] = alloc(psig, m, "str.to_code", 0, 1, &strT, intT);
|
|
m_sigs[OP_STRING_FROM_CODE] = alloc(psig, m, "str.from_code", 0, 1, &intT, strT);
|
|
m_sigs[_OP_STRING_CONCAT] = alloc(psig, m, "str.++", 1, 2, str2T, strT);
|
|
m_sigs[_OP_STRING_LENGTH] = alloc(psig, m, "str.len", 0, 1, &strT, intT);
|
|
m_sigs[_OP_STRING_STRCTN] = alloc(psig, m, "str.contains", 0, 2, str2T, boolT);
|
|
m_sigs[_OP_STRING_CHARAT] = alloc(psig, m, "str.at", 0, 2, strTint2T, strT);
|
|
m_sigs[_OP_STRING_PREFIX] = alloc(psig, m, "str.prefixof", 0, 2, str2T, boolT);
|
|
m_sigs[_OP_STRING_SUFFIX] = alloc(psig, m, "str.suffixof", 0, 2, str2T, boolT);
|
|
m_sigs[_OP_STRING_IN_REGEXP] = alloc(psig, m, "str.in_re", 0, 2, strTreT, boolT);
|
|
m_sigs[_OP_STRING_TO_REGEXP] = alloc(psig, m, "str.to_re", 0, 1, &strT, reT);
|
|
m_sigs[_OP_REGEXP_EMPTY] = alloc(psig, m, "re.none", 0, 0, nullptr, reT);
|
|
m_sigs[_OP_REGEXP_FULL_CHAR] = alloc(psig, m, "re.allchar", 0, 0, nullptr, reT);
|
|
m_sigs[_OP_STRING_SUBSTR] = alloc(psig, m, "str.substr", 0, 3, strTint2T, strT);
|
|
}
|
|
|
|
void seq_decl_plugin::set_manager(ast_manager* m, family_id id) {
|
|
decl_plugin::set_manager(m, id);
|
|
bv_util bv(*m);
|
|
m_char_plugin = static_cast<char_decl_plugin*>(m_manager->get_plugin(m_manager->mk_family_id("char")));
|
|
m_char = get_char_plugin().char_sort();
|
|
m->inc_ref(m_char);
|
|
parameter param(m_char);
|
|
m_string = m->mk_sort(symbol("String"), sort_info(m_family_id, SEQ_SORT, 1, ¶m));
|
|
m->inc_ref(m_string);
|
|
parameter paramS(m_string);
|
|
m_reglan = m->mk_sort(m_family_id, RE_SORT, 1, ¶mS);
|
|
m->inc_ref(m_reglan);
|
|
}
|
|
|
|
sort * seq_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {
|
|
init();
|
|
ast_manager& m = *m_manager;
|
|
switch (k) {
|
|
case SEQ_SORT:
|
|
if (num_parameters != 1) {
|
|
m.raise_exception("Invalid sequence sort, expecting one parameter");
|
|
}
|
|
if (!parameters[0].is_ast() || !is_sort(parameters[0].get_ast())) {
|
|
m.raise_exception("invalid sequence sort, parameter is not a sort");
|
|
}
|
|
if (parameters[0].get_ast() == m_char) {
|
|
return m_string;
|
|
}
|
|
return m.mk_sort(symbol("Seq"), sort_info(m_family_id, SEQ_SORT, num_parameters, parameters));
|
|
case RE_SORT: {
|
|
if (num_parameters != 1) {
|
|
m.raise_exception("Invalid regex sort, expecting one parameter");
|
|
}
|
|
if (!parameters[0].is_ast() || !is_sort(parameters[0].get_ast())) {
|
|
m.raise_exception("invalid regex sort, parameter is not a sort");
|
|
}
|
|
return m.mk_sort(symbol("RegEx"), sort_info(m_family_id, RE_SORT, num_parameters, parameters));
|
|
}
|
|
case _STRING_SORT:
|
|
return m_string;
|
|
case _REGLAN_SORT:
|
|
return m_reglan;
|
|
default:
|
|
UNREACHABLE();
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
func_decl* seq_decl_plugin::mk_seq_fun(decl_kind k, unsigned arity, sort* const* domain, sort* range, decl_kind k_string) {
|
|
ast_manager& m = *m_manager;
|
|
sort_ref rng(m);
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(m_sigs[(domain[0] == m_string)?k_string:k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k));
|
|
}
|
|
|
|
|
|
func_decl* seq_decl_plugin::mk_str_fun(decl_kind k, unsigned arity, sort* const* domain, sort* range, decl_kind k_seq) {
|
|
ast_manager& m = *m_manager;
|
|
sort_ref rng(m);
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k_seq));
|
|
}
|
|
|
|
func_decl* seq_decl_plugin::mk_assoc_fun(decl_kind k, unsigned arity, sort* const* domain, sort* range, decl_kind k_seq, decl_kind k_string) {
|
|
return mk_assoc_fun(k, arity, domain, range, k_seq, k_string, true);
|
|
}
|
|
|
|
func_decl* seq_decl_plugin::mk_left_assoc_fun(decl_kind k, unsigned arity, sort* const* domain, sort* range, decl_kind k_seq, decl_kind k_string) {
|
|
return mk_assoc_fun(k, arity, domain, range, k_seq, k_string, false);
|
|
}
|
|
|
|
func_decl* seq_decl_plugin::mk_assoc_fun(decl_kind k, unsigned arity, sort* const* domain, sort* range, decl_kind k_seq, decl_kind k_string, bool is_right) {
|
|
ast_manager& m = *m_manager;
|
|
sort_ref rng(m);
|
|
if (arity == 0) {
|
|
m.raise_exception("Invalid function application. At least one argument expected");
|
|
}
|
|
match_assoc(*m_sigs[k], arity, domain, range, rng);
|
|
func_decl_info info(m_family_id, k_seq);
|
|
if (is_right)
|
|
info.set_right_associative(true);
|
|
info.set_left_associative(true);
|
|
return m.mk_func_decl(m_sigs[(rng == m_string)?k_string:k_seq]->m_name, rng, rng, rng, info);
|
|
}
|
|
|
|
|
|
func_decl * seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
|
|
unsigned arity, sort * const * domain, sort * range) {
|
|
init();
|
|
m_has_seq = true;
|
|
ast_manager& m = *m_manager;
|
|
sort_ref rng(m);
|
|
switch(k) {
|
|
case OP_SEQ_EMPTY:
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
if (rng == m_string) {
|
|
parameter param(symbol(""));
|
|
return mk_func_decl(OP_STRING_CONST, 1, ¶m, 0, nullptr, m_string);
|
|
}
|
|
else {
|
|
parameter param(rng.get());
|
|
func_decl_info info(m_family_id, k, 1, ¶m);
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, info);
|
|
}
|
|
|
|
case OP_RE_PLUS:
|
|
case OP_RE_STAR:
|
|
case OP_RE_OPTION:
|
|
case OP_RE_RANGE:
|
|
case OP_RE_OF_PRED:
|
|
case OP_RE_COMPLEMENT:
|
|
case OP_RE_REVERSE:
|
|
case OP_RE_DERIVATIVE:
|
|
case _OP_RE_ANTIMOROV_UNION:
|
|
m_has_re = true;
|
|
// fall-through
|
|
case OP_SEQ_UNIT:
|
|
case OP_STRING_ITOS:
|
|
case OP_STRING_STOI:
|
|
case OP_STRING_LT:
|
|
case OP_STRING_LE:
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k));
|
|
case OP_STRING_IS_DIGIT:
|
|
case OP_STRING_TO_CODE:
|
|
case OP_STRING_FROM_CODE:
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k));
|
|
|
|
case _OP_REGEXP_FULL_CHAR:
|
|
m_has_re = true;
|
|
if (!range) range = m_reglan;
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(symbol("re.allchar"), arity, domain, rng, func_decl_info(m_family_id, OP_RE_FULL_CHAR_SET));
|
|
|
|
case OP_RE_FULL_CHAR_SET:
|
|
m_has_re = true;
|
|
if (!range) range = m_reglan;
|
|
if (range == m_reglan) {
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(symbol("re.allchar"), arity, domain, rng, func_decl_info(m_family_id, k));
|
|
}
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, range, func_decl_info(m_family_id, k));
|
|
|
|
case OP_RE_FULL_SEQ_SET:
|
|
m_has_re = true;
|
|
if (!range) range = m_reglan;
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, range, func_decl_info(m_family_id, k));
|
|
|
|
case _OP_REGEXP_EMPTY:
|
|
m_has_re = true;
|
|
if (!range) range = m_reglan;
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(symbol("re.none"), arity, domain, rng, func_decl_info(m_family_id, OP_RE_EMPTY_SET));
|
|
|
|
case OP_RE_EMPTY_SET:
|
|
m_has_re = true;
|
|
if (!range) range = m_reglan;
|
|
if (range == m_reglan) {
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(symbol("re.none"), arity, domain, rng, func_decl_info(m_family_id, k));
|
|
}
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, range, func_decl_info(m_family_id, k));
|
|
|
|
case OP_RE_LOOP:
|
|
m_has_re = true;
|
|
switch (arity) {
|
|
case 1:
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
if (num_parameters == 0 || num_parameters > 2 || !parameters[0].is_int() || (num_parameters == 2 && !parameters[1].is_int())) {
|
|
m.raise_exception("Expecting two numeral parameters to function re-loop");
|
|
}
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k, num_parameters, parameters));
|
|
case 2:
|
|
if (m_reglan != domain[0] || !arith_util(m).is_int(domain[1])) {
|
|
m.raise_exception("Incorrect type of arguments passed to re.loop. Expecting regular expression and two integer parameters");
|
|
}
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, domain[0], func_decl_info(m_family_id, k, num_parameters, parameters));
|
|
case 3:
|
|
if (m_reglan != domain[0] || !arith_util(m).is_int(domain[1]) || !arith_util(m).is_int(domain[2])) {
|
|
m.raise_exception("Incorrect type of arguments passed to re.loop. Expecting regular expression and two integer parameters");
|
|
}
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, domain[0], func_decl_info(m_family_id, k, num_parameters, parameters));
|
|
default:
|
|
m.raise_exception("Incorrect number of arguments passed to loop. Expected 1 regular expression and two integer parameters");
|
|
}
|
|
case OP_RE_POWER:
|
|
m_has_re = true;
|
|
if (num_parameters == 1 && parameters[0].is_int() && arity == 1 && parameters[0].get_int() >= 0) {
|
|
rng = domain[0];
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k, num_parameters, parameters));
|
|
}
|
|
m.raise_exception("Incorrect arguments used for re.^. Expected one non-negative integer parameter");
|
|
|
|
case OP_STRING_CONST:
|
|
if (!(num_parameters == 1 && arity == 0 && parameters[0].is_symbol())) {
|
|
m.raise_exception("invalid string declaration");
|
|
}
|
|
return m.mk_const_decl(m_stringc_sym, m_string,
|
|
func_decl_info(m_family_id, OP_STRING_CONST, num_parameters, parameters));
|
|
|
|
case OP_RE_UNION:
|
|
case OP_RE_CONCAT:
|
|
case OP_RE_INTERSECT:
|
|
case OP_RE_DIFF:
|
|
m_has_re = true;
|
|
return mk_left_assoc_fun(k, arity, domain, range, k, k);
|
|
|
|
case OP_SEQ_REPLACE_RE_ALL:
|
|
case OP_SEQ_REPLACE_RE:
|
|
m_has_re = true;
|
|
case OP_SEQ_REPLACE_ALL:
|
|
return mk_str_fun(k, arity, domain, range, k);
|
|
|
|
case OP_SEQ_CONCAT:
|
|
return mk_assoc_fun(k, arity, domain, range, k, _OP_STRING_CONCAT);
|
|
|
|
case _OP_STRING_CONCAT:
|
|
return mk_assoc_fun(k, arity, domain, range, OP_SEQ_CONCAT, k);
|
|
|
|
case _OP_STRING_FROM_CHAR: {
|
|
if (!(num_parameters == 1 && parameters[0].is_int()))
|
|
m.raise_exception("character literal expects integer parameter");
|
|
zstring zs(parameters[0].get_int());
|
|
parameter p(zs.encode());
|
|
return m.mk_const_decl(m_stringc_sym, m_string,func_decl_info(m_family_id, OP_STRING_CONST, 1, &p));
|
|
}
|
|
|
|
case OP_SEQ_REPLACE:
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_STRREPL);
|
|
case _OP_STRING_STRREPL:
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_REPLACE);
|
|
|
|
case OP_SEQ_INDEX:
|
|
if (arity == 2) {
|
|
sort* dom[3] = { domain[0], domain[1], arith_util(m).mk_int() };
|
|
sort_ref rng(m);
|
|
match(*m_sigs[k], 3, dom, range, rng);
|
|
return m.mk_func_decl(m_sigs[(dom[0] == m_string)?_OP_STRING_STRIDOF:k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k));
|
|
}
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_STRIDOF);
|
|
case _OP_STRING_STRIDOF:
|
|
if (arity == 2) {
|
|
sort* dom[3] = { domain[0], domain[1], arith_util(m).mk_int() };
|
|
sort_ref rng(m);
|
|
match(*m_sigs[k], 3, dom, range, rng);
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, OP_SEQ_INDEX));
|
|
}
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_INDEX);
|
|
case OP_SEQ_LAST_INDEX:
|
|
if (arity != 2) {
|
|
m.raise_exception("two arguments expected tin last_indexof");
|
|
}
|
|
else {
|
|
return mk_seq_fun(k, arity, domain, range, OP_SEQ_LAST_INDEX);
|
|
}
|
|
case OP_SEQ_PREFIX:
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_PREFIX);
|
|
case _OP_STRING_PREFIX:
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_PREFIX);
|
|
|
|
case OP_SEQ_SUFFIX:
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_SUFFIX);
|
|
case _OP_STRING_SUFFIX:
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_SUFFIX);
|
|
|
|
case OP_SEQ_LENGTH:
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_LENGTH);
|
|
case _OP_STRING_LENGTH:
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_LENGTH);
|
|
|
|
case OP_SEQ_CONTAINS:
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_STRCTN);
|
|
case _OP_STRING_STRCTN:
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_CONTAINS);
|
|
|
|
case OP_SEQ_TO_RE:
|
|
m_has_re = true;
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_TO_REGEXP);
|
|
case _OP_STRING_TO_REGEXP:
|
|
m_has_re = true;
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_TO_RE);
|
|
|
|
case OP_SEQ_IN_RE:
|
|
m_has_re = true;
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_IN_REGEXP);
|
|
case _OP_STRING_IN_REGEXP:
|
|
m_has_re = true;
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_IN_RE);
|
|
|
|
case OP_SEQ_AT:
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_CHARAT);
|
|
case _OP_STRING_CHARAT:
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_AT);
|
|
|
|
case OP_SEQ_NTH:
|
|
case OP_SEQ_NTH_I:
|
|
case OP_SEQ_NTH_U:
|
|
match(*m_sigs[k], arity, domain, range, rng);
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k));
|
|
|
|
case OP_SEQ_EXTRACT:
|
|
return mk_seq_fun(k, arity, domain, range, _OP_STRING_SUBSTR);
|
|
case _OP_STRING_SUBSTR:
|
|
return mk_str_fun(k, arity, domain, range, OP_SEQ_EXTRACT);
|
|
|
|
case _OP_SEQ_SKOLEM: {
|
|
if (num_parameters == 0 || !parameters[0].is_symbol()) {
|
|
m.raise_exception("first parameter to skolem symbol should be a parameter");
|
|
}
|
|
symbol s = parameters[0].get_symbol();
|
|
return m.mk_func_decl(s, arity, domain, range, func_decl_info(m_family_id, k, num_parameters, parameters));
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void seq_decl_plugin::get_op_names(svector<builtin_name> & op_names, symbol const & logic) {
|
|
init();
|
|
for (unsigned i = 0; i < m_sigs.size(); ++i) {
|
|
if (m_sigs[i]) {
|
|
op_names.push_back(builtin_name(m_sigs[i]->m_name.str(), i));
|
|
}
|
|
}
|
|
op_names.push_back(builtin_name("str.in.re", _OP_STRING_IN_REGEXP));
|
|
op_names.push_back(builtin_name("str.in-re", _OP_STRING_IN_REGEXP));
|
|
op_names.push_back(builtin_name("str.to.re", _OP_STRING_TO_REGEXP));
|
|
op_names.push_back(builtin_name("str.to-re", _OP_STRING_TO_REGEXP));
|
|
op_names.push_back(builtin_name("str.to-int", OP_STRING_STOI));
|
|
op_names.push_back(builtin_name("str.to.int", OP_STRING_STOI));
|
|
op_names.push_back(builtin_name("str.from-int", OP_STRING_ITOS));
|
|
op_names.push_back(builtin_name("int.to.str", OP_STRING_ITOS));
|
|
op_names.push_back(builtin_name("re.nostr", _OP_REGEXP_EMPTY));
|
|
op_names.push_back(builtin_name("re.complement", OP_RE_COMPLEMENT));
|
|
}
|
|
|
|
void seq_decl_plugin::get_sort_names(svector<builtin_name> & sort_names, symbol const & logic) {
|
|
init();
|
|
sort_names.push_back(builtin_name("Seq", SEQ_SORT));
|
|
sort_names.push_back(builtin_name("RegEx", RE_SORT));
|
|
|
|
// SMTLIB 2.6 RegLan, String
|
|
sort_names.push_back(builtin_name("RegLan", _REGLAN_SORT));
|
|
sort_names.push_back(builtin_name("String", _STRING_SORT));
|
|
|
|
// SMTLIB 2.5 compatibility
|
|
sort_names.push_back(builtin_name("StringSequence", _STRING_SORT));
|
|
}
|
|
|
|
app* seq_decl_plugin::mk_string(symbol const& s) {
|
|
parameter param(s);
|
|
func_decl* f = m_manager->mk_const_decl(m_stringc_sym, m_string,
|
|
func_decl_info(m_family_id, OP_STRING_CONST, 1, ¶m));
|
|
return m_manager->mk_const(f);
|
|
}
|
|
|
|
app* seq_decl_plugin::mk_string(zstring const& s) {
|
|
symbol sym(s.encode());
|
|
parameter param(sym);
|
|
func_decl* f = m_manager->mk_const_decl(m_stringc_sym, m_string,
|
|
func_decl_info(m_family_id, OP_STRING_CONST, 1, ¶m));
|
|
return m_manager->mk_const(f);
|
|
}
|
|
|
|
app* seq_decl_plugin::mk_char(unsigned u) {
|
|
return get_char_plugin().mk_char(u);
|
|
}
|
|
|
|
bool seq_decl_plugin::is_considered_uninterpreted(func_decl * f) {
|
|
seq_util util(*m_manager);
|
|
return util.str.is_nth_u(f);
|
|
}
|
|
|
|
bool seq_decl_plugin::is_unique_value(app* e) const {
|
|
return false;
|
|
}
|
|
|
|
bool seq_decl_plugin::is_value(app* e) const {
|
|
while (true) {
|
|
if (is_app_of(e, m_family_id, OP_SEQ_EMPTY))
|
|
return true;
|
|
if (is_app_of(e, m_family_id, OP_STRING_CONST))
|
|
return true;
|
|
if (is_app_of(e, m_family_id, OP_SEQ_UNIT) &&
|
|
m_manager->is_value(e->get_arg(0)))
|
|
return true;
|
|
if (is_app_of(e, m_family_id, OP_SEQ_CONCAT)) {
|
|
bool first = true;
|
|
for (expr* arg : *e) {
|
|
if (first) {
|
|
first = false;
|
|
}
|
|
else if (is_app(arg) && !is_value(to_app(arg))) {
|
|
return false;
|
|
}
|
|
}
|
|
if (!is_app(e->get_arg(0))) return false;
|
|
e = to_app(e->get_arg(0));
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool seq_decl_plugin::are_equal(app* a, app* b) const {
|
|
if (a == b) return true;
|
|
// handle concatenations
|
|
return false;
|
|
}
|
|
|
|
bool seq_decl_plugin::are_distinct(app* a, app* b) const {
|
|
if (a == b)
|
|
return false;
|
|
if (is_app_of(a, m_family_id, OP_STRING_CONST) &&
|
|
is_app_of(b, m_family_id, OP_STRING_CONST))
|
|
return true;
|
|
if (is_app_of(a, m_family_id, OP_SEQ_UNIT) &&
|
|
is_app_of(b, m_family_id, OP_SEQ_UNIT))
|
|
return m_manager->are_distinct(a->get_arg(0), b->get_arg(0));
|
|
if (is_app_of(a, m_family_id, OP_SEQ_EMPTY) &&
|
|
is_app_of(b, m_family_id, OP_SEQ_UNIT))
|
|
return true;
|
|
if (is_app_of(b, m_family_id, OP_SEQ_EMPTY) &&
|
|
is_app_of(a, m_family_id, OP_SEQ_UNIT))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
expr* seq_decl_plugin::get_some_value(sort* s) {
|
|
seq_util util(*m_manager);
|
|
if (util.is_seq(s)) {
|
|
return util.str.mk_empty(s);
|
|
}
|
|
sort* seq;
|
|
if (util.is_re(s, seq)) {
|
|
return util.re.mk_to_re(util.str.mk_empty(seq));
|
|
}
|
|
UNREACHABLE();
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
app* seq_util::mk_skolem(symbol const& name, unsigned n, expr* const* args, sort* range) {
|
|
SASSERT(range);
|
|
parameter param(name);
|
|
func_decl* f = m.mk_func_decl(get_family_id(), _OP_SEQ_SKOLEM, 1, ¶m, n, args, range);
|
|
return m.mk_app(f, n, args);
|
|
}
|
|
|
|
app* seq_util::str::mk_string(zstring const& s) const {
|
|
return u.seq.mk_string(s);
|
|
}
|
|
|
|
app* seq_util::str::mk_char(zstring const& s, unsigned idx) const {
|
|
return u.mk_char(s[idx]);
|
|
}
|
|
|
|
app* seq_util::str::mk_char(unsigned ch) const {
|
|
return u.mk_char(ch);
|
|
}
|
|
|
|
app* seq_util::str::mk_char_bit(expr* e, unsigned idx) {
|
|
return u.mk_char_bit(e, idx);
|
|
}
|
|
|
|
app* seq_util::mk_char_bit(expr* e, unsigned i) {
|
|
parameter params[2] = { parameter(symbol("char.bit")), parameter(i) };
|
|
sort* range = m.mk_bool_sort();
|
|
func_decl* f = m.mk_func_decl(get_family_id(), _OP_SEQ_SKOLEM, 2, params, 1, &e, range);
|
|
return m.mk_app(f, 1, &e);
|
|
}
|
|
|
|
unsigned seq_util::max_plus(unsigned x, unsigned y) const {
|
|
if (x + y < x || x + y < y)
|
|
return UINT_MAX;
|
|
return x + y;
|
|
}
|
|
|
|
unsigned seq_util::max_mul(unsigned x, unsigned y) const {
|
|
uint64_t r = ((uint64_t)x)*((uint64_t)y);
|
|
return (r > UINT_MAX) ? UINT_MAX : (unsigned)r;
|
|
}
|
|
|
|
|
|
bool seq_util::is_const_char(expr* e, unsigned& c) const {
|
|
return ch.is_const_char(e, c);
|
|
}
|
|
|
|
bool seq_util::is_char_le(expr const* e) const {
|
|
return ch.is_le(e);
|
|
}
|
|
|
|
app* seq_util::mk_char(unsigned ch) const {
|
|
return seq.mk_char(ch);
|
|
}
|
|
|
|
app* seq_util::mk_le(expr* ch1, expr* ch2) const {
|
|
return ch.mk_le(ch1, ch2);
|
|
}
|
|
|
|
app* seq_util::mk_lt(expr* ch1, expr* ch2) const {
|
|
return m.mk_not(mk_le(ch2, ch1));
|
|
}
|
|
|
|
bool seq_util::str::is_string(func_decl const* f, zstring& s) const {
|
|
if (is_string(f)) {
|
|
s = zstring(f->get_parameter(0).get_symbol().bare_str());
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool seq_util::str::is_string(expr const* n, zstring& s) const {
|
|
return is_app(n) && is_string(to_app(n)->get_decl(), s);
|
|
}
|
|
|
|
bool seq_util::str::is_nth_i(expr const* n, expr*& s, unsigned& idx) const {
|
|
expr* i = nullptr;
|
|
if (!is_nth_i(n, s, i)) return false;
|
|
return arith_util(m).is_unsigned(i, idx);
|
|
}
|
|
|
|
app* seq_util::str::mk_nth_i(expr* s, unsigned i) const {
|
|
return mk_nth_i(s, arith_util(m).mk_int(i));
|
|
}
|
|
|
|
void seq_util::str::get_concat(expr* e, expr_ref_vector& es) const {
|
|
expr* e1, *e2;
|
|
while (is_concat(e, e1, e2)) {
|
|
get_concat(e1, es);
|
|
e = e2;
|
|
}
|
|
if (!is_empty(e)) {
|
|
es.push_back(e);
|
|
}
|
|
}
|
|
|
|
void seq_util::str::get_concat_units(expr* e, expr_ref_vector& es) const {
|
|
expr* e1, *e2;
|
|
while (is_concat(e, e1, e2)) {
|
|
get_concat_units(e1, es);
|
|
e = e2;
|
|
}
|
|
zstring s;
|
|
if (is_string(e, s)) {
|
|
unsigned sz = s.length();
|
|
for (unsigned j = 0; j < sz; ++j) {
|
|
es.push_back(mk_unit(mk_char(s, j)));
|
|
}
|
|
}
|
|
else if (!is_empty(e)) {
|
|
es.push_back(e);
|
|
}
|
|
}
|
|
|
|
app* seq_util::str::mk_is_empty(expr* s) const {
|
|
return m.mk_eq(s, mk_empty(s->get_sort()));
|
|
}
|
|
|
|
|
|
|
|
unsigned seq_util::str::min_length(expr* s) const {
|
|
SASSERT(u.is_seq(s));
|
|
unsigned result = 0;
|
|
expr* s1 = nullptr, *s2 = nullptr;
|
|
auto get_length = [&](expr* s1) {
|
|
zstring st;
|
|
if (is_unit(s1))
|
|
return 1u;
|
|
else if (is_string(s1, st))
|
|
return st.length();
|
|
else
|
|
return 0u;
|
|
};
|
|
while (is_concat(s, s1, s2)) {
|
|
result += get_length(s1);
|
|
s = s2;
|
|
}
|
|
result += get_length(s);
|
|
return result;
|
|
}
|
|
|
|
unsigned seq_util::str::max_length(expr* s) const {
|
|
SASSERT(u.is_seq(s));
|
|
unsigned result = 0;
|
|
expr* s1 = nullptr, *s2 = nullptr, *s3 = nullptr;
|
|
unsigned n = 0;
|
|
zstring st;
|
|
auto get_length = [&](expr* s1) {
|
|
if (is_empty(s1))
|
|
return 0u;
|
|
else if (is_unit(s1))
|
|
return 1u;
|
|
else if (is_at(s1))
|
|
return 1u;
|
|
else if (is_extract(s1, s1, s2, s3))
|
|
return (arith_util(m).is_unsigned(s3, n)) ? n : UINT_MAX;
|
|
else if (is_string(s1, st))
|
|
return st.length();
|
|
else
|
|
return UINT_MAX;
|
|
};
|
|
while (is_concat(s, s1, s2)) {
|
|
result = u.max_plus(get_length(s), result);
|
|
s = s2;
|
|
}
|
|
result = u.max_plus(get_length(s), result);
|
|
return result;
|
|
}
|
|
|
|
unsigned seq_util::rex::min_length(expr* r) const {
|
|
SASSERT(u.is_re(r));
|
|
return get_info(r).min_length;
|
|
}
|
|
|
|
unsigned seq_util::rex::max_length(expr* r) const {
|
|
SASSERT(u.is_re(r));
|
|
expr* r1 = nullptr, *r2 = nullptr, *s = nullptr;
|
|
unsigned lo = 0, hi = 0;
|
|
if (is_empty(r))
|
|
return 0;
|
|
if (is_concat(r, r1, r2))
|
|
return u.max_plus(max_length(r1), max_length(r2));
|
|
if (is_union(r, r1, r2) || m.is_ite(r, s, r1, r2))
|
|
return std::max(max_length(r1), max_length(r2));
|
|
if (is_intersection(r, r1, r2))
|
|
return std::min(max_length(r1), max_length(r2));
|
|
if (is_diff(r, r1, r2) || is_reverse(r, r1) || is_opt(r, r1))
|
|
return max_length(r1);
|
|
if (is_loop(r, r1, lo, hi))
|
|
return u.max_mul(hi, max_length(r1));
|
|
if (is_to_re(r, s))
|
|
return u.str.max_length(s);
|
|
if (is_range(r) || is_of_pred(r) || is_full_char(r))
|
|
return 1;
|
|
// Else: star, plus, complement, full_seq, loop(r,r1,lo), derivative
|
|
return UINT_MAX;
|
|
}
|
|
|
|
sort* seq_util::rex::to_seq(sort* re) {
|
|
(void)u;
|
|
SASSERT(u.is_re(re));
|
|
return to_sort(re->get_parameter(0).get_ast());
|
|
}
|
|
|
|
app* seq_util::rex::mk_loop(expr* r, unsigned lo) {
|
|
parameter param(lo);
|
|
return m.mk_app(m_fid, OP_RE_LOOP, 1, ¶m, 1, &r);
|
|
}
|
|
|
|
app* seq_util::rex::mk_loop(expr* r, unsigned lo, unsigned hi) {
|
|
parameter params[2] = { parameter(lo), parameter(hi) };
|
|
return m.mk_app(m_fid, OP_RE_LOOP, 2, params, 1, &r);
|
|
}
|
|
|
|
app* seq_util::rex::mk_loop(expr* r, expr* lo) {
|
|
expr* rs[2] = { r, lo };
|
|
return m.mk_app(m_fid, OP_RE_LOOP, 0, nullptr, 2, rs);
|
|
}
|
|
|
|
app* seq_util::rex::mk_loop(expr* r, expr* lo, expr* hi) {
|
|
expr* rs[3] = { r, lo, hi };
|
|
return m.mk_app(m_fid, OP_RE_LOOP, 0, nullptr, 3, rs);
|
|
}
|
|
|
|
app* seq_util::rex::mk_full_char(sort* s) {
|
|
return m.mk_app(m_fid, OP_RE_FULL_CHAR_SET, 0, nullptr, 0, nullptr, s);
|
|
}
|
|
|
|
app* seq_util::rex::mk_full_seq(sort* s) {
|
|
return m.mk_app(m_fid, OP_RE_FULL_SEQ_SET, 0, nullptr, 0, nullptr, s);
|
|
}
|
|
|
|
app* seq_util::rex::mk_empty(sort* s) {
|
|
return m.mk_app(m_fid, OP_RE_EMPTY_SET, 0, nullptr, 0, nullptr, s);
|
|
}
|
|
|
|
app* seq_util::rex::mk_of_pred(expr* p) {
|
|
return m.mk_app(m_fid, OP_RE_OF_PRED, 0, nullptr, 1, &p);
|
|
}
|
|
|
|
bool seq_util::rex::is_loop(expr const* n, expr*& body, unsigned& lo, unsigned& hi) const {
|
|
if (is_loop(n)) {
|
|
app const* a = to_app(n);
|
|
if (a->get_num_args() == 1 && a->get_decl()->get_num_parameters() == 2) {
|
|
body = a->get_arg(0);
|
|
lo = a->get_decl()->get_parameter(0).get_int();
|
|
hi = a->get_decl()->get_parameter(1).get_int();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool seq_util::rex::is_loop(expr const* n, expr*& body, unsigned& lo) const {
|
|
if (is_loop(n)) {
|
|
app const* a = to_app(n);
|
|
if (a->get_num_args() == 1 && a->get_decl()->get_num_parameters() == 1) {
|
|
body = a->get_arg(0);
|
|
lo = a->get_decl()->get_parameter(0).get_int();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool seq_util::rex::is_loop(expr const* n, expr*& body, expr*& lo, expr*& hi) const {
|
|
if (is_loop(n)) {
|
|
app const* a = to_app(n);
|
|
if (a->get_num_args() == 3) {
|
|
body = a->get_arg(0);
|
|
lo = a->get_arg(1);
|
|
hi = a->get_arg(2);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool seq_util::rex::is_loop(expr const* n, expr*& body, expr*& lo) const {
|
|
if (is_loop(n)) {
|
|
app const* a = to_app(n);
|
|
if (a->get_num_args() == 2) {
|
|
body = a->get_arg(0);
|
|
lo = a->get_arg(1);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
Returns true iff e is the epsilon regex.
|
|
*/
|
|
bool seq_util::rex::is_epsilon(expr* r) const {
|
|
expr* s;
|
|
return is_to_re(r, s) && u.str.is_empty(s);
|
|
}
|
|
/**
|
|
Makes the epsilon regex for a given sequence sort.
|
|
*/
|
|
app* seq_util::rex::mk_epsilon(sort* seq_sort) {
|
|
return mk_to_re(u.str.mk_empty(seq_sort));
|
|
}
|
|
|
|
/*
|
|
Produces compact view of concrete concatenations such as (abcd).
|
|
*/
|
|
std::ostream& seq_util::rex::pp::compact_helper_seq(std::ostream& out, expr* s) const {
|
|
SASSERT(re.u.is_seq(s));
|
|
if (re.u.str.is_empty(s))
|
|
out << "()";
|
|
else if (re.u.str.is_unit(s))
|
|
seq_unit(out, s);
|
|
else if (re.u.str.is_concat(s)) {
|
|
expr_ref_vector es(re.m);
|
|
re.u.str.get_concat(s, es);
|
|
for (expr* e : es)
|
|
compact_helper_seq(out, e);
|
|
}
|
|
//using braces to indicate 'full' output
|
|
//for example an uninterpreted constant X will be printed as {X}
|
|
//while a unit sequence "X" will be printed as X
|
|
//thus for example (concat "X" "Y" Z "W") where Z is uninterpreted is printed as XY{Z}W
|
|
else out << "{" << mk_pp(s, re.m) << "}";
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
Produces output such as [a-z] for a range.
|
|
*/
|
|
std::ostream& seq_util::rex::pp::compact_helper_range(std::ostream& out, expr* s1, expr* s2) const {
|
|
out << "[";
|
|
seq_unit(out, s1) << "-";
|
|
seq_unit(out, s2) << "]";
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
Checks if parenthesis can be omitted in some cases in a loop body or in complement.
|
|
*/
|
|
bool seq_util::rex::pp::can_skip_parenth(expr* r) const {
|
|
expr* s;
|
|
return ((re.is_to_re(r, s) && re.u.str.is_unit(s)) || re.is_range(r) || re.is_empty(r) || re.is_epsilon(r) || re.is_full_char(r));
|
|
}
|
|
|
|
/*
|
|
Specialize output for a unit sequence converting to visible ASCII characters if possible.
|
|
*/
|
|
std::ostream& seq_util::rex::pp::seq_unit(std::ostream& out, expr* s) const {
|
|
expr* e;
|
|
unsigned n = 0;
|
|
if (re.u.str.is_unit(s, e) && re.u.is_const_char(e, n)) {
|
|
char c = (char)n;
|
|
if (c == '\n')
|
|
out << "\\n";
|
|
else if (c == '\r')
|
|
out << "\\r";
|
|
else if (c == '\f')
|
|
out << "\\f";
|
|
else if (c == ' ')
|
|
out << "\\s";
|
|
else if (c == '(' || c == ')' || c == '{' || c == '}' || c == '[' || c == ']' || c == '.' || c == '\\')
|
|
out << "\\" << c;
|
|
else if (32 < n && n < 127) {
|
|
if (html_encode) {
|
|
if (c == '<')
|
|
out << "<";
|
|
else if (c == '>')
|
|
out << ">";
|
|
else if (c == '&')
|
|
out << "&";
|
|
else if (c == '\"')
|
|
out << """;
|
|
else
|
|
out << "\\x" << std::hex << n;
|
|
}
|
|
else
|
|
out << c;
|
|
}
|
|
else if (n <= 0xF)
|
|
out << "\\x0" << std::hex << n;
|
|
else if (n <= 0xFF)
|
|
out << "\\x" << std::hex << n;
|
|
else if (n <= 0xFFF)
|
|
out << "\\u0" << std::hex << n;
|
|
else
|
|
out << "\\u" << std::hex << n;
|
|
}
|
|
else
|
|
out << "{" << mk_pp(s, re.m) << "}";
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
Pretty prints the regex r into the out stream
|
|
*/
|
|
std::ostream& seq_util::rex::pp::display(std::ostream& out) const {
|
|
expr* r1 = nullptr, * r2 = nullptr, * s = nullptr, * s2 = nullptr;
|
|
unsigned lo = 0, hi = 0;
|
|
if (re.is_full_char(e))
|
|
return out << ".";
|
|
else if (re.is_full_seq(e))
|
|
return out << ".*";
|
|
else if (re.is_to_re(e, s))
|
|
return compact_helper_seq(out, s);
|
|
else if (re.is_range(e, s, s2))
|
|
return compact_helper_range(out, s, s2);
|
|
else if (re.is_epsilon(e))
|
|
return out << "()";
|
|
else if (re.is_empty(e))
|
|
return out << "[]";
|
|
else if (re.is_concat(e, r1, r2))
|
|
return out << pp(re, r1) << pp(re, r2);
|
|
else if (re.is_union(e, r1, r2))
|
|
return out << pp(re, r1) << "|" << pp(re, r2);
|
|
else if (re.is_intersection(e, r1, r2))
|
|
return out << "(" << pp(re, r1) << (html_encode ? ")&(": ")&(" ) << pp(re, r2) << ")";
|
|
else if (re.is_complement(e, r1)) {
|
|
if (can_skip_parenth(r1))
|
|
return out << "~" << pp(re, r1);
|
|
else
|
|
return out << "~(" << pp(re, r1) << ")";
|
|
}
|
|
else if (re.is_plus(e, r1)) {
|
|
if (can_skip_parenth(r1))
|
|
return out << pp(re, r1) << "+";
|
|
else
|
|
return out << "(" << pp(re, r1) << ")+";
|
|
}
|
|
else if (re.is_star(e, r1)) {
|
|
if (can_skip_parenth(r1))
|
|
return out << pp(re, r1) << "*";
|
|
else
|
|
return out << "(" << pp(re, r1) << ")*";
|
|
}
|
|
else if (re.is_loop(e, r1, lo)) {
|
|
if (can_skip_parenth(r1))
|
|
return out << pp(re, r1) << "{" << lo << ",}";
|
|
else
|
|
return out << "(" << pp(re, r1) << "){" << lo << ",}";
|
|
}
|
|
else if (re.is_loop(e, r1, lo, hi)) {
|
|
if (can_skip_parenth(r1)) {
|
|
if (lo == hi)
|
|
return out << pp(re, r1) << "{" << lo << "}";
|
|
else
|
|
return out << pp(re, r1) << "{" << lo << "," << hi << "}";
|
|
}
|
|
else {
|
|
if (lo == hi)
|
|
return out << "(" << pp(re, r1) << "){" << lo << "}";
|
|
else
|
|
return out << "(" << pp(re, r1) << "){" << lo << "," << hi << "}";
|
|
}
|
|
}
|
|
else if (re.is_diff(e, r1, r2))
|
|
return out << "(" << pp(re, r1) << ")\\(" << pp(re, r2) << ")";
|
|
else if (re.m.is_ite(e, s, r1, r2))
|
|
return out << "if(" << mk_pp(s, re.m) << "," << pp(re, r1) << "," << pp(re, r2) << ")";
|
|
else if (re.is_opt(e, r1)) {
|
|
if (can_skip_parenth(r1))
|
|
return out << pp(re, r1) << "?";
|
|
else
|
|
return out << "(" << pp(re, r1) << ")?";
|
|
}
|
|
else if (re.is_reverse(e, r1))
|
|
return out << "reverse(" << pp(re, r1) << ")";
|
|
else
|
|
// Else: derivative or is_of_pred
|
|
return out << "{" << mk_pp(e, re.m) << "}";
|
|
}
|
|
|
|
/*
|
|
Pretty prints the regex r into the output string
|
|
*/
|
|
std::string seq_util::rex::to_str(expr* r) const {
|
|
std::ostringstream out;
|
|
out << pp(u.re, r);
|
|
return out.str();
|
|
}
|
|
|
|
/*
|
|
Returns true iff info has been computed for the regex r
|
|
*/
|
|
bool seq_util::rex::has_valid_info(expr* r) const {
|
|
return r->get_id() < m_infos.size() && m_infos[r->get_id()].is_valid();
|
|
}
|
|
|
|
/*
|
|
Returns the info in the cache if the info is valid. Returns invalid_info otherwise.
|
|
*/
|
|
seq_util::rex::info seq_util::rex::get_cached_info(expr* e) const {
|
|
if (has_valid_info(e))
|
|
return m_infos[e->get_id()];
|
|
else
|
|
return invalid_info;
|
|
}
|
|
|
|
/*
|
|
Get the information value associated with the regular expression e
|
|
*/
|
|
seq_util::rex::info seq_util::rex::get_info(expr* e) const
|
|
{
|
|
SASSERT(u.is_re(e));
|
|
auto result = get_cached_info(e);
|
|
if (result.is_valid())
|
|
return result;
|
|
m_info_pinned.push_back(e);
|
|
return get_info_rec(e);
|
|
}
|
|
|
|
/*
|
|
Gets the info value for the given regex e, possibly making a new info recursively over the structure of e.
|
|
*/
|
|
seq_util::rex::info seq_util::rex::get_info_rec(expr* e) const {
|
|
auto result = get_cached_info(e);
|
|
if (result.is_valid())
|
|
return result;
|
|
if (!is_app(e))
|
|
result = unknown_info;
|
|
else
|
|
result = mk_info_rec(to_app(e));
|
|
m_infos.setx(e->get_id(), result, invalid_info);
|
|
STRACE("re_info", tout << "compute_info(" << pp(u.re, e) << ")=" << result << std::endl;);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
Computes the info value for the given regex e recursively over the structure of e.
|
|
The regex e does not yet have an entry in the cache.
|
|
*/
|
|
seq_util::rex::info seq_util::rex::mk_info_rec(app* e) const {
|
|
info i1, i2;
|
|
lbool nullable(l_false);
|
|
unsigned min_length(0), lower_bound(0), upper_bound(UINT_MAX);
|
|
bool is_value(false);
|
|
if (e->get_family_id() == u.get_family_id()) {
|
|
switch (e->get_decl()->get_decl_kind()) {
|
|
case OP_RE_EMPTY_SET:
|
|
return info(true, true, true, true, true, true, false, l_false, UINT_MAX, 0);
|
|
case OP_RE_FULL_SEQ_SET:
|
|
return info(true, true, true, true, true, true, false, l_true, 0, 1);
|
|
case OP_RE_STAR:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
return i1.star();
|
|
case OP_RE_OPTION:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
return i1.opt();
|
|
case OP_RE_RANGE:
|
|
case OP_RE_FULL_CHAR_SET:
|
|
case OP_RE_OF_PRED:
|
|
//TBD: check if the character predicate contains uninterpreted symbols or is nonground or is unsat
|
|
//TBD: check if the range is unsat
|
|
return info(true, true, true, true, true, true, true, l_false, 1, 0);
|
|
case OP_RE_CONCAT:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
i2 = get_info_rec(e->get_arg(1));
|
|
return i1.concat(i2, u.re.is_concat(e->get_arg(0)));
|
|
case OP_RE_UNION:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
i2 = get_info_rec(e->get_arg(1));
|
|
return i1.disj(i2);
|
|
case OP_RE_INTERSECT:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
i2 = get_info_rec(e->get_arg(1));
|
|
return i1.conj(i2);
|
|
case OP_SEQ_TO_RE:
|
|
min_length = u.str.min_length(e->get_arg(0));
|
|
is_value = m.is_value(e->get_arg(0));
|
|
nullable = (is_value && min_length == 0 ? l_true : (min_length > 0 ? l_false : l_undef));
|
|
return info(true, true, is_value, true, true, true, (min_length == 1 && u.str.max_length(e->get_arg(0)) == 1), nullable, min_length, 0);
|
|
case OP_RE_REVERSE:
|
|
return get_info_rec(e->get_arg(0));
|
|
case OP_RE_PLUS:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
return i1.plus();
|
|
case OP_RE_COMPLEMENT:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
return i1.complement();
|
|
case OP_RE_LOOP:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
if (e->get_decl()->get_num_parameters() >= 1)
|
|
lower_bound = e->get_decl()->get_parameter(0).get_int();
|
|
if (e->get_decl()->get_num_parameters() == 2)
|
|
upper_bound = e->get_decl()->get_parameter(1).get_int();
|
|
return i1.loop(lower_bound, upper_bound);
|
|
case OP_RE_DIFF:
|
|
i1 = get_info_rec(e->get_arg(0));
|
|
i2 = get_info_rec(e->get_arg(1));
|
|
return i1.diff(i2);
|
|
}
|
|
return unknown_info;
|
|
}
|
|
expr* c, * t, * f;
|
|
if (u.m.is_ite(e, c, t, f)) {
|
|
i1 = get_info_rec(t);
|
|
i2 = get_info_rec(f);
|
|
return i1.orelse(i2);
|
|
}
|
|
return unknown_info;
|
|
}
|
|
|
|
std::ostream& seq_util::rex::info::display(std::ostream& out) const {
|
|
if (is_known()) {
|
|
out << "info("
|
|
<< "nullable=" << (nullable == l_true ? "T" : (nullable == l_false ? "F" : "U")) << ", "
|
|
<< "classical=" << (classical ? "T" : "F") << ", "
|
|
<< "standard=" << (standard ? "T" : "F") << ", "
|
|
<< "nonbranching=" << (nonbranching ? "T" : "F") << ", "
|
|
<< "normalized=" << (normalized ? "T" : "F") << ", "
|
|
<< "monadic=" << (monadic ? "T" : "F") << ", "
|
|
<< "singleton=" << (singleton ? "T" : "F") << ", "
|
|
<< "min_length=" << min_length << ", "
|
|
<< "star_height=" << star_height << ")";
|
|
}
|
|
else if (is_valid())
|
|
out << "UNKNOWN";
|
|
else
|
|
out << "INVALID";
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
String representation of the info.
|
|
*/
|
|
std::string seq_util::rex::info::str() const {
|
|
std::ostringstream out;
|
|
display(out);
|
|
return out.str();
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::star() const {
|
|
//if is_known() is false then all mentioned properties will remain false
|
|
return seq_util::rex::info(classical, classical, interpreted, nonbranching, normalized, monadic, false, l_true, 0, star_height + 1);
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::plus() const {
|
|
if (is_known()) {
|
|
//plus never occurs in a normalized regex
|
|
return info(classical, classical, interpreted, nonbranching, false, monadic, false, nullable, min_length, star_height + 1);
|
|
}
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::opt() const {
|
|
// if is_known() is false then all mentioned properties will remain false
|
|
// optional construct never occurs in a normalized regex
|
|
return seq_util::rex::info(classical, classical, interpreted, nonbranching, false, monadic, false, l_true, 0, star_height);
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::complement() const {
|
|
if (is_known()) {
|
|
lbool compl_nullable = (nullable == l_true ? l_false : (nullable == l_false ? l_true : l_undef));
|
|
unsigned compl_min_length = (compl_nullable == l_false ? 1 : 0);
|
|
return info(false, standard, interpreted, nonbranching, normalized, monadic, false, compl_nullable, compl_min_length, star_height);
|
|
}
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::concat(seq_util::rex::info const& rhs, bool lhs_is_concat) const {
|
|
if (is_known()) {
|
|
if (rhs.is_known()) {
|
|
unsigned m = min_length + rhs.min_length;
|
|
if (m < min_length || m < rhs.min_length)
|
|
m = UINT_MAX;
|
|
return info(classical & rhs.classical,
|
|
classical && rhs.classical, //both args of concat must be classical for it to be standard
|
|
interpreted && rhs.interpreted,
|
|
nonbranching && rhs.nonbranching,
|
|
(normalized && !lhs_is_concat && rhs.normalized),
|
|
monadic && rhs.monadic,
|
|
false,
|
|
((nullable == l_false || rhs.nullable == l_false) ? l_false : ((nullable == l_true && rhs.nullable == l_true) ? l_true : l_undef)),
|
|
m,
|
|
std::max(star_height, rhs.star_height));
|
|
}
|
|
else
|
|
return rhs;
|
|
}
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::disj(seq_util::rex::info const& rhs) const {
|
|
if (is_known() || rhs.is_known()) {
|
|
//works correctly if one of the arguments is unknown
|
|
return info(classical & rhs.classical,
|
|
standard && rhs.standard,
|
|
interpreted && rhs.interpreted,
|
|
nonbranching && rhs.nonbranching,
|
|
normalized && rhs.normalized,
|
|
monadic && rhs.monadic,
|
|
singleton && rhs.singleton,
|
|
((nullable == l_true || rhs.nullable == l_true) ? l_true : ((nullable == l_false && rhs.nullable == l_false) ? l_false : l_undef)),
|
|
std::min(min_length, rhs.min_length),
|
|
std::max(star_height, rhs.star_height));
|
|
}
|
|
else
|
|
return rhs;
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::conj(seq_util::rex::info const& rhs) const {
|
|
if (is_known()) {
|
|
if (rhs.is_known()) {
|
|
return info(false,
|
|
standard && rhs.standard,
|
|
interpreted && rhs.interpreted,
|
|
nonbranching && rhs.nonbranching,
|
|
normalized && rhs.normalized,
|
|
monadic && rhs.monadic,
|
|
singleton && rhs.singleton,
|
|
((nullable == l_true && rhs.nullable == l_true) ? l_true : ((nullable == l_false || rhs.nullable == l_false) ? l_false : l_undef)),
|
|
std::max(min_length, rhs.min_length),
|
|
std::max(star_height, rhs.star_height));
|
|
}
|
|
else
|
|
return rhs;
|
|
}
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::diff(seq_util::rex::info const& rhs) const {
|
|
if (is_known()) {
|
|
if (rhs.is_known()) {
|
|
return info(false,
|
|
standard & rhs.standard,
|
|
interpreted & rhs.interpreted,
|
|
nonbranching & rhs.nonbranching,
|
|
normalized & rhs.normalized,
|
|
monadic & rhs.monadic,
|
|
false,
|
|
((nullable == l_true && rhs.nullable == l_false) ? l_true : ((nullable == l_false || rhs.nullable == l_false) ? l_false : l_undef)),
|
|
std::max(min_length, rhs.min_length),
|
|
std::max(star_height, rhs.star_height));
|
|
}
|
|
else
|
|
return rhs;
|
|
}
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::orelse(seq_util::rex::info const& i) const {
|
|
if (is_known()) {
|
|
if (i.is_known()) {
|
|
// unsigned ite_min_length = std::min(min_length, i.min_length);
|
|
// lbool ite_nullable = (nullable == i.nullable ? nullable : l_undef);
|
|
// TBD: whether ite is interpreted or not depends on whether the condition is interpreted and both branches are interpreted
|
|
return info(false, false, false, false, normalized && i.normalized, monadic && i.monadic, singleton && i.singleton, nullable, min_length, std::max(star_height, i.star_height));
|
|
}
|
|
else
|
|
return i;
|
|
}
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
seq_util::rex::info seq_util::rex::info::loop(unsigned lower, unsigned upper) const {
|
|
if (is_known()) {
|
|
unsigned m = min_length * lower;
|
|
if (m > 0 && (m < min_length || m < lower))
|
|
m = UINT_MAX;
|
|
lbool loop_nullable = (nullable == l_true || lower == 0 ? l_true : nullable);
|
|
if (upper == UINT_MAX) {
|
|
// this means the loop is r{lower,*} and is therefore not normalized
|
|
// normalized regex would be r{lower,lower}r* and would in particular not use r{0,} for r*
|
|
return info(classical, classical, interpreted, nonbranching, false, singleton, false, loop_nullable, m, star_height + 1);
|
|
}
|
|
else {
|
|
bool loop_normalized = normalized;
|
|
// r{lower,upper} is not normalized if r is nullable but lower > 0
|
|
// r{0,1} is not normalized: it should be ()|r
|
|
// r{1,1} is not normalized: it should be r
|
|
// r{lower,upper} is not normalized if lower > upper it should then be [] (empty)
|
|
if ((nullable == l_true && lower > 0) || upper == 1 || lower > upper)
|
|
loop_normalized = false;
|
|
return info(classical, classical, interpreted, nonbranching, loop_normalized, singleton, false, loop_nullable, m, star_height);
|
|
}
|
|
}
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
|