3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 11:43:36 +00:00
z3/src/api/java/Expr.java
Christoph M. Wintersteiger 4304012971 Java API: copyright notices
Signed-off-by: Christoph M. Wintersteiger <cwinter@microsoft.com>
2014-10-22 16:55:08 +01:00

1818 lines
54 KiB
Java

/**
Copyright (c) 2012-2014 Microsoft Corporation
Module Name:
Expr.java
Abstract:
Author:
@author Christoph Wintersteiger (cwinter) 2012-03-15
Notes:
**/
package com.microsoft.z3;
import com.microsoft.z3.enumerations.Z3_ast_kind;
import com.microsoft.z3.enumerations.Z3_decl_kind;
import com.microsoft.z3.enumerations.Z3_lbool;
import com.microsoft.z3.enumerations.Z3_sort_kind;
/* using System; */
/**
* Expressions are terms.
**/
public class Expr extends AST
{
/**
* Returns a simplified version of the expression
**/
public Expr simplify() throws Z3Exception
{
return simplify(null);
}
/**
* Returns a simplified version of the expression
* A set of
* parameters <param name="p" /> to configure the simplifier
* <seealso cref="Context.SimplifyHelp"/>
**/
public Expr simplify(Params p) throws Z3Exception
{
if (p == null)
return Expr.create(getContext(),
Native.simplify(getContext().nCtx(), getNativeObject()));
else
return Expr.create(
getContext(),
Native.simplifyEx(getContext().nCtx(), getNativeObject(),
p.getNativeObject()));
}
/**
* The function declaration of the function that is applied in this
* expression.
**/
public FuncDecl getFuncDecl() throws Z3Exception
{
return new FuncDecl(getContext(), Native.getAppDecl(getContext().nCtx(),
getNativeObject()));
}
/**
* Indicates whether the expression is the true or false expression or
* something else (Z3_L_UNDEF).
**/
public Z3_lbool getBoolValue() throws Z3Exception
{
return Z3_lbool.fromInt(Native.getBoolValue(getContext().nCtx(),
getNativeObject()));
}
/**
* The number of arguments of the expression.
**/
public int getNumArgs() throws Z3Exception
{
return Native.getAppNumArgs(getContext().nCtx(), getNativeObject());
}
/**
* The arguments of the expression.
**/
public Expr[] getArgs() throws Z3Exception
{
int n = getNumArgs();
Expr[] res = new Expr[n];
for (int i = 0; i < n; i++)
res[i] = Expr.create(getContext(),
Native.getAppArg(getContext().nCtx(), getNativeObject(), i));
return res;
}
/**
* Update the arguments of the expression using the arguments <paramref
* name="args"/> The number of new arguments should coincide with the
* current number of arguments.
**/
public void update(Expr[] args) throws Z3Exception
{
getContext().checkContextMatch(args);
if (isApp() && args.length != getNumArgs())
throw new Z3Exception("Number of arguments does not match");
setNativeObject(Native.updateTerm(getContext().nCtx(), getNativeObject(),
(int) args.length, Expr.arrayToNative(args)));
}
/**
* Substitute every occurrence of <code>from[i]</code> in the expression
* with <code>to[i]</code>, for <code>i</code> smaller than
* <code>num_exprs</code>. <remarks> The result is the new expression. The
* arrays <code>from</code> and <code>to</code> must have size
* <code>num_exprs</code>. For every <code>i</code> smaller than
* <code>num_exprs</code>, we must have that sort of <code>from[i]</code>
* must be equal to sort of <code>to[i]</code>. </remarks>
**/
public Expr substitute(Expr[] from, Expr[] to) throws Z3Exception
{
getContext().checkContextMatch(from);
getContext().checkContextMatch(to);
if (from.length != to.length)
throw new Z3Exception("Argument sizes do not match");
return Expr.create(getContext(), Native.substitute(getContext().nCtx(),
getNativeObject(), (int) from.length, Expr.arrayToNative(from),
Expr.arrayToNative(to)));
}
/**
* Substitute every occurrence of <code>from</code> in the expression with
* <code>to</code>. <seealso cref="Substitute(Expr[],Expr[])"/>
**/
public Expr substitute(Expr from, Expr to) throws Z3Exception
{
return substitute(new Expr[] { from }, new Expr[] { to });
}
/**
* Substitute the free variables in the expression with the expressions in
* <paramref name="to"/> <remarks> For every <code>i</code> smaller than
* <code>num_exprs</code>, the variable with de-Bruijn index <code>i</code>
* is replaced with term <code>to[i]</code>. </remarks>
**/
public Expr substituteVars(Expr[] to) throws Z3Exception
{
getContext().checkContextMatch(to);
return Expr.create(getContext(), Native.substituteVars(getContext().nCtx(),
getNativeObject(), (int) to.length, Expr.arrayToNative(to)));
}
/**
* Translates (copies) the term to the Context <paramref name="ctx"/>.
* <param name="ctx">A context</param>
*
* @return A copy of the term which is associated with <paramref
* name="ctx"/>
**/
public Expr translate(Context ctx) throws Z3Exception
{
if (getContext() == ctx)
return this;
else
return Expr.create(
ctx,
Native.translate(getContext().nCtx(), getNativeObject(),
ctx.nCtx()));
}
/**
* Returns a string representation of the expression.
**/
public String toString()
{
return super.toString();
}
/**
* Indicates whether the term is a numeral
**/
public boolean isNumeral() throws Z3Exception
{
return Native.isNumeralAst(getContext().nCtx(), getNativeObject());
}
/**
* Indicates whether the term is well-sorted.
*
* @return True if the term is well-sorted, false otherwise.
**/
public boolean isWellSorted() throws Z3Exception
{
return Native.isWellSorted(getContext().nCtx(), getNativeObject());
}
/**
* The Sort of the term.
**/
public Sort getSort() throws Z3Exception
{
return Sort.create(getContext(),
Native.getSort(getContext().nCtx(), getNativeObject()));
}
/**
* Indicates whether the term represents a constant.
**/
public boolean isConst() throws Z3Exception
{
return isApp() && getNumArgs() == 0 && getFuncDecl().getDomainSize() == 0;
}
/**
* Indicates whether the term is an integer numeral.
**/
public boolean isIntNum() throws Z3Exception
{
return isNumeral() && isInt();
}
/**
* Indicates whether the term is a real numeral.
**/
public boolean isRatNum() throws Z3Exception
{
return isNumeral() && isReal();
}
/**
* Indicates whether the term is an algebraic number
**/
public boolean isAlgebraicNumber() throws Z3Exception
{
return Native.isAlgebraicNumber(getContext().nCtx(), getNativeObject());
}
/**
* Indicates whether the term has Boolean sort.
**/
public boolean isBool() throws Z3Exception
{
return (isExpr() && Native.isEqSort(getContext().nCtx(),
Native.mkBoolSort(getContext().nCtx()),
Native.getSort(getContext().nCtx(), getNativeObject())));
}
/**
* Indicates whether the term is the constant true.
**/
public boolean isTrue() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_TRUE;
}
/**
* Indicates whether the term is the constant false.
**/
public boolean isFalse() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_FALSE;
}
/**
* Indicates whether the term is an equality predicate.
**/
public boolean isEq() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_EQ;
}
/**
* Indicates whether the term is an n-ary distinct predicate (every argument
* is mutually distinct).
**/
public boolean isDistinct() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_DISTINCT;
}
/**
* Indicates whether the term is a ternary if-then-else term
**/
public boolean isITE() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ITE;
}
/**
* Indicates whether the term is an n-ary conjunction
**/
public boolean isAnd() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_AND;
}
/**
* Indicates whether the term is an n-ary disjunction
**/
public boolean isOr() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_OR;
}
/**
* Indicates whether the term is an if-and-only-if (Boolean equivalence,
* binary)
**/
public boolean isIff() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_IFF;
}
/**
* Indicates whether the term is an exclusive or
**/
public boolean isXor() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_XOR;
}
/**
* Indicates whether the term is a negation
**/
public boolean isNot() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_NOT;
}
/**
* Indicates whether the term is an implication
**/
public boolean isImplies() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_IMPLIES;
}
/**
* Indicates whether the term is of integer sort.
**/
public boolean isInt() throws Z3Exception
{
return (Native.isNumeralAst(getContext().nCtx(), getNativeObject()) && Native
.getSortKind(getContext().nCtx(),
Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_INT_SORT
.toInt());
}
/**
* Indicates whether the term is of sort real.
**/
public boolean isReal() throws Z3Exception
{
return Native.getSortKind(getContext().nCtx(),
Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_REAL_SORT
.toInt();
}
/**
* Indicates whether the term is an arithmetic numeral.
**/
public boolean isArithmeticNumeral() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ANUM;
}
/**
* Indicates whether the term is a less-than-or-equal
**/
public boolean isLE() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LE;
}
/**
* Indicates whether the term is a greater-than-or-equal
**/
public boolean isGE() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_GE;
}
/**
* Indicates whether the term is a less-than
**/
public boolean isLT() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LT;
}
/**
* Indicates whether the term is a greater-than
**/
public boolean isGT() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_GT;
}
/**
* Indicates whether the term is addition (binary)
**/
public boolean isAdd() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ADD;
}
/**
* Indicates whether the term is subtraction (binary)
**/
public boolean isSub() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SUB;
}
/**
* Indicates whether the term is a unary minus
**/
public boolean isUMinus() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_UMINUS;
}
/**
* Indicates whether the term is multiplication (binary)
**/
public boolean isMul() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_MUL;
}
/**
* Indicates whether the term is division (binary)
**/
public boolean isDiv() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_DIV;
}
/**
* Indicates whether the term is integer division (binary)
**/
public boolean isIDiv() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_IDIV;
}
/**
* Indicates whether the term is remainder (binary)
**/
public boolean isRemainder() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_REM;
}
/**
* Indicates whether the term is modulus (binary)
**/
public boolean isModulus() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_MOD;
}
/**
* Indicates whether the term is a coercion of integer to real (unary)
**/
public boolean isIntToReal() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_TO_REAL;
}
/**
* Indicates whether the term is a coercion of real to integer (unary)
**/
public boolean isRealToInt() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_TO_INT;
}
/**
* Indicates whether the term is a check that tests whether a real is
* integral (unary)
**/
public boolean isRealIsInt() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_IS_INT;
}
/**
* Indicates whether the term is of an array sort.
**/
public boolean isArray() throws Z3Exception
{
return (Native.isApp(getContext().nCtx(), getNativeObject()) && Z3_sort_kind
.fromInt(Native.getSortKind(getContext().nCtx(),
Native.getSort(getContext().nCtx(), getNativeObject()))) == Z3_sort_kind.Z3_ARRAY_SORT);
}
/**
* Indicates whether the term is an array store. <remarks>It satisfies
* select(store(a,i,v),j) = if i = j then v else select(a,j). Array store
* takes at least 3 arguments. </remarks>
**/
public boolean isStore() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_STORE;
}
/**
* Indicates whether the term is an array select.
**/
public boolean isSelect() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SELECT;
}
/**
* Indicates whether the term is a constant array. <remarks>For example,
* select(const(v),i) = v holds for every v and i. The function is
* unary.</remarks>
**/
public boolean isConstantArray() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_CONST_ARRAY;
}
/**
* Indicates whether the term is a default array. <remarks>For example
* default(const(v)) = v. The function is unary.</remarks>
**/
public boolean isDefaultArray() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ARRAY_DEFAULT;
}
/**
* Indicates whether the term is an array map. <remarks>It satisfies
* map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.</remarks>
**/
public boolean isArrayMap() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ARRAY_MAP;
}
/**
* Indicates whether the term is an as-array term. <remarks>An as-array term
* is n array value that behaves as the function graph of the function
* passed as parameter.</remarks>
**/
public boolean isAsArray() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_AS_ARRAY;
}
/**
* Indicates whether the term is set union
**/
public boolean isSetUnion() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_UNION;
}
/**
* Indicates whether the term is set intersection
**/
public boolean isSetIntersect() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_INTERSECT;
}
/**
* Indicates whether the term is set difference
**/
public boolean isSetDifference() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_DIFFERENCE;
}
/**
* Indicates whether the term is set complement
**/
public boolean isSetComplement() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_COMPLEMENT;
}
/**
* Indicates whether the term is set subset
**/
public boolean isSetSubset() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_SUBSET;
}
/**
* Indicates whether the terms is of bit-vector sort.
**/
public boolean isBV() throws Z3Exception
{
return Native.getSortKind(getContext().nCtx(),
Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_BV_SORT
.toInt();
}
/**
* Indicates whether the term is a bit-vector numeral
**/
public boolean isBVNumeral() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNUM;
}
/**
* Indicates whether the term is a one-bit bit-vector with value one
**/
public boolean isBVBitOne() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BIT1;
}
/**
* Indicates whether the term is a one-bit bit-vector with value zero
**/
public boolean isBVBitZero() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BIT0;
}
/**
* Indicates whether the term is a bit-vector unary minus
**/
public boolean isBVUMinus() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNEG;
}
/**
* Indicates whether the term is a bit-vector addition (binary)
**/
public boolean isBVAdd() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BADD;
}
/**
* Indicates whether the term is a bit-vector subtraction (binary)
**/
public boolean isBVSub() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSUB;
}
/**
* Indicates whether the term is a bit-vector multiplication (binary)
**/
public boolean isBVMul() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BMUL;
}
/**
* Indicates whether the term is a bit-vector signed division (binary)
**/
public boolean isBVSDiv() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSDIV;
}
/**
* Indicates whether the term is a bit-vector unsigned division (binary)
**/
public boolean isBVUDiv() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BUDIV;
}
/**
* Indicates whether the term is a bit-vector signed remainder (binary)
**/
public boolean isBVSRem() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSREM;
}
/**
* Indicates whether the term is a bit-vector unsigned remainder (binary)
**/
public boolean isBVURem() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BUREM;
}
/**
* Indicates whether the term is a bit-vector signed modulus
**/
public boolean isBVSMod() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSMOD;
}
/**
* Indicates whether the term is a bit-vector signed division by zero
**/
boolean IsBVSDiv0() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSDIV0;
}
/**
* Indicates whether the term is a bit-vector unsigned division by zero
**/
boolean IsBVUDiv0() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BUDIV0;
}
/**
* Indicates whether the term is a bit-vector signed remainder by zero
**/
boolean IsBVSRem0() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSREM0;
}
/**
* Indicates whether the term is a bit-vector unsigned remainder by zero
**/
boolean IsBVURem0() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BUREM0;
}
/**
* Indicates whether the term is a bit-vector signed modulus by zero
**/
boolean IsBVSMod0() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSMOD0;
}
/**
* Indicates whether the term is an unsigned bit-vector less-than-or-equal
**/
public boolean isBVULE() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ULEQ;
}
/**
* Indicates whether the term is a signed bit-vector less-than-or-equal
**/
public boolean isBVSLE() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SLEQ;
}
/**
* Indicates whether the term is an unsigned bit-vector
* greater-than-or-equal
**/
public boolean isBVUGE() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_UGEQ;
}
/**
* Indicates whether the term is a signed bit-vector greater-than-or-equal
**/
public boolean isBVSGE() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SGEQ;
}
/**
* Indicates whether the term is an unsigned bit-vector less-than
**/
public boolean isBVULT() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ULT;
}
/**
* Indicates whether the term is a signed bit-vector less-than
**/
public boolean isBVSLT() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SLT;
}
/**
* Indicates whether the term is an unsigned bit-vector greater-than
**/
public boolean isBVUGT() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_UGT;
}
/**
* Indicates whether the term is a signed bit-vector greater-than
**/
public boolean isBVSGT() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SGT;
}
/**
* Indicates whether the term is a bit-wise AND
**/
public boolean isBVAND() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BAND;
}
/**
* Indicates whether the term is a bit-wise OR
**/
public boolean isBVOR() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BOR;
}
/**
* Indicates whether the term is a bit-wise NOT
**/
public boolean isBVNOT() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNOT;
}
/**
* Indicates whether the term is a bit-wise XOR
**/
public boolean isBVXOR() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BXOR;
}
/**
* Indicates whether the term is a bit-wise NAND
**/
public boolean isBVNAND() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNAND;
}
/**
* Indicates whether the term is a bit-wise NOR
**/
public boolean isBVNOR() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNOR;
}
/**
* Indicates whether the term is a bit-wise XNOR
**/
public boolean isBVXNOR() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BXNOR;
}
/**
* Indicates whether the term is a bit-vector concatenation (binary)
**/
public boolean isBVConcat() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_CONCAT;
}
/**
* Indicates whether the term is a bit-vector sign extension
**/
public boolean isBVSignExtension() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SIGN_EXT;
}
/**
* Indicates whether the term is a bit-vector zero extension
**/
public boolean isBVZeroExtension() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ZERO_EXT;
}
/**
* Indicates whether the term is a bit-vector extraction
**/
public boolean isBVExtract() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_EXTRACT;
}
/**
* Indicates whether the term is a bit-vector repetition
**/
public boolean isBVRepeat() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_REPEAT;
}
/**
* Indicates whether the term is a bit-vector reduce OR
**/
public boolean isBVReduceOR() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BREDOR;
}
/**
* Indicates whether the term is a bit-vector reduce AND
**/
public boolean isBVReduceAND() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BREDAND;
}
/**
* Indicates whether the term is a bit-vector comparison
**/
public boolean isBVComp() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BCOMP;
}
/**
* Indicates whether the term is a bit-vector shift left
**/
public boolean isBVShiftLeft() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSHL;
}
/**
* Indicates whether the term is a bit-vector logical shift right
**/
public boolean isBVShiftRightLogical() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BLSHR;
}
/**
* Indicates whether the term is a bit-vector arithmetic shift left
**/
public boolean isBVShiftRightArithmetic() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BASHR;
}
/**
* Indicates whether the term is a bit-vector rotate left
**/
public boolean isBVRotateLeft() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ROTATE_LEFT;
}
/**
* Indicates whether the term is a bit-vector rotate right
**/
public boolean isBVRotateRight() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ROTATE_RIGHT;
}
/**
* Indicates whether the term is a bit-vector rotate left (extended)
* <remarks>Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator
* instead of a parametric one.</remarks>
**/
public boolean isBVRotateLeftExtended() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_EXT_ROTATE_LEFT;
}
/**
* Indicates whether the term is a bit-vector rotate right (extended)
* <remarks>Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator
* instead of a parametric one.</remarks>
**/
public boolean isBVRotateRightExtended() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_EXT_ROTATE_RIGHT;
}
/**
* Indicates whether the term is a coercion from integer to bit-vector
* <remarks>This function is not supported by the decision procedures. Only
* the most rudimentary simplification rules are applied to this
* function.</remarks>
**/
public boolean isIntToBV() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_INT2BV;
}
/**
* Indicates whether the term is a coercion from bit-vector to integer
* <remarks>This function is not supported by the decision procedures. Only
* the most rudimentary simplification rules are applied to this
* function.</remarks>
**/
public boolean isBVToInt() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BV2INT;
}
/**
* Indicates whether the term is a bit-vector carry <remarks>Compute the
* carry bit in a full-adder. The meaning is given by the equivalence (carry
* l1 l2 l3) &lt;=&gt; (or (and l1 l2) (and l1 l3) (and l2 l3)))</remarks>
**/
public boolean isBVCarry() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_CARRY;
}
/**
* Indicates whether the term is a bit-vector ternary XOR <remarks>The
* meaning is given by the equivalence (xor3 l1 l2 l3) &lt;=&gt; (xor (xor
* l1 l2) l3)</remarks>
**/
public boolean isBVXOR3() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_XOR3;
}
/**
* Indicates whether the term is a label (used by the Boogie Verification
* condition generator). <remarks>The label has two parameters, a string and
* a Boolean polarity. It takes one argument, a formula.</remarks>
**/
public boolean isLabel() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LABEL;
}
/**
* Indicates whether the term is a label literal (used by the Boogie
* Verification condition generator). <remarks>A label literal has a set of
* string parameters. It takes no arguments.</remarks>
**/
public boolean isLabelLit() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LABEL_LIT;
}
/**
* Indicates whether the term is a binary equivalence modulo namings.
* <remarks>This binary predicate is used in proof terms. It captures
* equisatisfiability and equivalence modulo renamings.</remarks>
**/
public boolean isOEQ() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_OEQ;
}
/**
* Indicates whether the term is a Proof for the expression 'true'.
**/
public boolean isProofTrue() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_TRUE;
}
/**
* Indicates whether the term is a proof for a fact asserted by the user.
**/
public boolean isProofAsserted() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_ASSERTED;
}
/**
* Indicates whether the term is a proof for a fact (tagged as goal)
* asserted by the user.
**/
public boolean isProofGoal() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_GOAL;
}
/**
* Indicates whether the term is proof via modus ponens <remarks> Given a
* proof for p and a proof for (implies p q), produces a proof for q. T1: p
* T2: (implies p q) [mp T1 T2]: q The second antecedents may also be a
* proof for (iff p q).</remarks>
**/
public boolean isProofModusPonens() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS;
}
/**
* Indicates whether the term is a proof for (R t t), where R is a reflexive
* relation. <remarks>This proof object has no antecedents. The only
* reflexive relations that are used are equivalence modulo namings,
* equality and equivalence. That is, R is either '~', '=' or
* 'iff'.</remarks>
**/
public boolean isProofReflexivity() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_REFLEXIVITY;
}
/**
* Indicates whether the term is proof by symmetricity of a relation
* <remarks> Given an symmetric relation R and a proof for (R t s), produces
* a proof for (R s t). T1: (R t s) [symmetry T1]: (R s t) T1 is the
* antecedent of this proof object. </remarks>
**/
public boolean isProofSymmetry() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_SYMMETRY;
}
/**
* Indicates whether the term is a proof by transitivity of a relation
* <remarks> Given a transitive relation R, and proofs for (R t s) and (R s
* u), produces a proof for (R t u). T1: (R t s) T2: (R s u) [trans T1 T2]:
* (R t u) </remarks>
**/
public boolean isProofTransitivity() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY;
}
/**
* Indicates whether the term is a proof by condensed transitivity of a
* relation <remarks> Condensed transitivity proof. This proof object is
* only used if the parameter PROOF_MODE is 1. It combines several symmetry
* and transitivity proofs. Example: T1: (R a b) T2: (R c b) T3: (R c d)
* [trans* T1 T2 T3]: (R a d) R must be a symmetric and transitive relation.
*
* Assuming that this proof object is a proof for (R s t), then a proof
* checker must check if it is possible to prove (R s t) using the
* antecedents, symmetry and transitivity. That is, if there is a path from
* s to t, if we view every antecedent (R a b) as an edge between a and b.
* </remarks>
**/
public boolean isProofTransitivityStar() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY_STAR;
}
/**
* Indicates whether the term is a monotonicity proof object. <remarks> T1:
* (R t_1 s_1) ... Tn: (R t_n s_n) [monotonicity T1 ... Tn]: (R (f t_1 ...
* t_n) (f s_1 ... s_n)) Remark: if t_i == s_i, then the antecedent Ti is
* suppressed. That is, reflexivity proofs are supressed to save space.
* </remarks>
**/
public boolean isProofMonotonicity() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_MONOTONICITY;
}
/**
* Indicates whether the term is a quant-intro proof <remarks> Given a proof
* for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)). T1:
* (~ p q) [quant-intro T1]: (~ (forall (x) p) (forall (x) q)) </remarks>
**/
public boolean isProofQuantIntro() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_QUANT_INTRO;
}
/**
* Indicates whether the term is a distributivity proof object. <remarks>
* Given that f (= or) distributes over g (= and), produces a proof for (=
* (f a (g c d)) (g (f a c) (f a d))) If f and g are associative, this proof
* also justifies the following equality: (= (f (g a b) (g c d)) (g (f a c)
* (f a d) (f b c) (f b d))) where each f and g can have arbitrary number of
* arguments.
*
* This proof object has no antecedents. Remark. This rule is used by the
* CNF conversion pass and instantiated by f = or, and g = and. </remarks>
**/
public boolean isProofDistributivity() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_DISTRIBUTIVITY;
}
/**
* Indicates whether the term is a proof by elimination of AND <remarks>
* Given a proof for (and l_1 ... l_n), produces a proof for l_i T1: (and
* l_1 ... l_n) [and-elim T1]: l_i </remarks>
**/
public boolean isProofAndElimination() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_AND_ELIM;
}
/**
* Indicates whether the term is a proof by eliminiation of not-or <remarks>
* Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
* T1: (not (or l_1 ... l_n)) [not-or-elim T1]: (not l_i) </remarks>
**/
public boolean isProofOrElimination() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NOT_OR_ELIM;
}
/**
* Indicates whether the term is a proof by rewriting <remarks> A proof for
* a local rewriting step (= t s). The head function symbol of t is
* interpreted.
*
* This proof object has no antecedents. The conclusion of a rewrite rule is
* either an equality (= t s), an equivalence (iff t s), or
* equi-satisfiability (~ t s). Remark: if f is bool, then = is iff.
*
* Examples: (= (+ x 0) x) (= (+ x 1 2) (+ 3 x)) (iff (or x false) x)
* </remarks>
**/
public boolean isProofRewrite() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_REWRITE;
}
/**
* Indicates whether the term is a proof by rewriting <remarks> A proof for
* rewriting an expression t into an expression s. This proof object is used
* if the parameter PROOF_MODE is 1. This proof object can have n
* antecedents. The antecedents are proofs for equalities used as
* substitution rules. The object is also used in a few cases if the
* parameter PROOF_MODE is 2. The cases are: - When applying contextual
* simplification (CONTEXT_SIMPLIFIER=true) - When converting bit-vectors to
* Booleans (BIT2BOOL=true) - When pulling ite expression up
* (PULL_CHEAP_ITE_TREES=true) </remarks>
**/
public boolean isProofRewriteStar() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_REWRITE_STAR;
}
/**
* Indicates whether the term is a proof for pulling quantifiers out.
* <remarks> A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x)
* r))). This proof object has no antecedents. </remarks>
**/
public boolean isProofPullQuant() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_PULL_QUANT;
}
/**
* Indicates whether the term is a proof for pulling quantifiers out.
* <remarks> A proof for (iff P Q) where Q is in prenex normal form. This
* proof object is only used if the parameter PROOF_MODE is 1. This proof
* object has no antecedents </remarks>
**/
public boolean isProofPullQuantStar() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_PULL_QUANT_STAR;
}
/**
* Indicates whether the term is a proof for pushing quantifiers in.
* <remarks> A proof for: (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m]
* ... p_n[x_1 ... x_m])) (and (forall (x_1 ... x_m) p_1[x_1 ... x_m]) ...
* (forall (x_1 ... x_m) p_n[x_1 ... x_m]))) This proof object has no
* antecedents </remarks>
**/
public boolean isProofPushQuant() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_PUSH_QUANT;
}
/**
* Indicates whether the term is a proof for elimination of unused
* variables. <remarks> A proof for (iff (forall (x_1 ... x_n y_1 ... y_m)
* p[x_1 ... x_n]) (forall (x_1 ... x_n) p[x_1 ... x_n]))
*
* It is used to justify the elimination of unused variables. This proof
* object has no antecedents. </remarks>
**/
public boolean isProofElimUnusedVars() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_ELIM_UNUSED_VARS;
}
/**
* Indicates whether the term is a proof for destructive equality resolution
* <remarks> A proof for destructive equality resolution: (iff (forall (x)
* (or (not (= x t)) P[x])) P[t]) if x does not occur in t.
*
* This proof object has no antecedents.
*
* Several variables can be eliminated simultaneously. </remarks>
**/
public boolean isProofDER() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_DER;
}
/**
* Indicates whether the term is a proof for quantifier instantiation
* <remarks> A proof of (or (not (forall (x) (P x))) (P a)) </remarks>
**/
public boolean isProofQuantInst() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_QUANT_INST;
}
/**
* Indicates whether the term is a hypthesis marker. <remarks>Mark a
* hypothesis in a natural deduction style proof.</remarks>
**/
public boolean isProofHypothesis() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_HYPOTHESIS;
}
/**
* Indicates whether the term is a proof by lemma <remarks> T1: false [lemma
* T1]: (or (not l_1) ... (not l_n))
*
* This proof object has one antecedent: a hypothetical proof for false. It
* converts the proof in a proof for (or (not l_1) ... (not l_n)), when T1
* contains the hypotheses: l_1, ..., l_n. </remarks>
**/
public boolean isProofLemma() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_LEMMA;
}
/**
* Indicates whether the term is a proof by unit resolution <remarks> T1:
* (or l_1 ... l_n l_1' ... l_m') T2: (not l_1) ... T(n+1): (not l_n)
* [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m') </remarks>
**/
public boolean isProofUnitResolution() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_UNIT_RESOLUTION;
}
/**
* Indicates whether the term is a proof by iff-true <remarks> T1: p
* [iff-true T1]: (iff p true) </remarks>
**/
public boolean isProofIFFTrue() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_IFF_TRUE;
}
/**
* Indicates whether the term is a proof by iff-false <remarks> T1: (not p)
* [iff-false T1]: (iff p false) </remarks>
**/
public boolean isProofIFFFalse() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_IFF_FALSE;
}
/**
* Indicates whether the term is a proof by commutativity <remarks> [comm]:
* (= (f a b) (f b a))
*
* f is a commutative operator.
*
* This proof object has no antecedents. Remark: if f is bool, then = is
* iff. </remarks>
**/
public boolean isProofCommutativity() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_COMMUTATIVITY;
}
/**
* Indicates whether the term is a proof for Tseitin-like axioms <remarks>
* Proof object used to justify Tseitin's like axioms:
*
* (or (not (and p q)) p) (or (not (and p q)) q) (or (not (and p q r)) p)
* (or (not (and p q r)) q) (or (not (and p q r)) r) ... (or (and p q) (not
* p) (not q)) (or (not (or p q)) p q) (or (or p q) (not p)) (or (or p q)
* (not q)) (or (not (iff p q)) (not p) q) (or (not (iff p q)) p (not q))
* (or (iff p q) (not p) (not q)) (or (iff p q) p q) (or (not (ite a b c))
* (not a) b) (or (not (ite a b c)) a c) (or (ite a b c) (not a) (not b))
* (or (ite a b c) a (not c)) (or (not (not a)) (not a)) (or (not a) a)
*
* This proof object has no antecedents. Note: all axioms are propositional
* tautologies. Note also that 'and' and 'or' can take multiple arguments.
* You can recover the propositional tautologies by unfolding the Boolean
* connectives in the axioms a small bounded number of steps (=3).
* </remarks>
**/
public boolean isProofDefAxiom() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_DEF_AXIOM;
}
/**
* Indicates whether the term is a proof for introduction of a name
* <remarks> Introduces a name for a formula/term. Suppose e is an
* expression with free variables x, and def-intro introduces the name n(x).
* The possible cases are:
*
* When e is of Boolean type: [def-intro]: (and (or n (not e)) (or (not n)
* e))
*
* or: [def-intro]: (or (not n) e) when e only occurs positively.
*
* When e is of the form (ite cond th el): [def-intro]: (and (or (not cond)
* (= n th)) (or cond (= n el)))
*
* Otherwise: [def-intro]: (= n e) </remarks>
**/
public boolean isProofDefIntro() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_DEF_INTRO;
}
/**
* Indicates whether the term is a proof for application of a definition
* <remarks> [apply-def T1]: F ~ n F is 'equivalent' to n, given that T1 is
* a proof that n is a name for F. </remarks>
**/
public boolean isProofApplyDef() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_APPLY_DEF;
}
/**
* Indicates whether the term is a proof iff-oeq <remarks> T1: (iff p q)
* [iff~ T1]: (~ p q) </remarks>
**/
public boolean isProofIFFOEQ() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_IFF_OEQ;
}
/**
* Indicates whether the term is a proof for a positive NNF step <remarks>
* Proof for a (positive) NNF step. Example:
*
* T1: (not s_1) ~ r_1 T2: (not s_2) ~ r_2 T3: s_1 ~ r_1' T4: s_2 ~ r_2'
* [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2) (and (or r_1 r_2') (or r_1'
* r_2)))
*
* The negation normal form steps NNF_POS and NNF_NEG are used in the
* following cases: (a) When creating the NNF of a positive force
* quantifier. The quantifier is retained (unless the bound variables are
* eliminated). Example T1: q ~ q_new [nnf-pos T1]: (~ (forall (x T) q)
* (forall (x T) q_new))
*
* (b) When recursively creating NNF over Boolean formulas, where the
* top-level connective is changed during NNF conversion. The relevant
* Boolean connectives for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
* NNF_NEG furthermore handles the case where negation is pushed over
* Boolean connectives 'and' and 'or'. </remarks>
**/
public boolean isProofNNFPos() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NNF_POS;
}
/**
* Indicates whether the term is a proof for a negative NNF step <remarks>
* Proof for a (negative) NNF step. Examples:
*
* T1: (not s_1) ~ r_1 ... Tn: (not s_n) ~ r_n [nnf-neg T1 ... Tn]: (not
* (and s_1 ... s_n)) ~ (or r_1 ... r_n) and T1: (not s_1) ~ r_1 ... Tn:
* (not s_n) ~ r_n [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1
* ... r_n) and T1: (not s_1) ~ r_1 T2: (not s_2) ~ r_2 T3: s_1 ~ r_1' T4:
* s_2 ~ r_2' [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2)) (and (or r_1
* r_2) (or r_1' r_2'))) </remarks>
**/
public boolean isProofNNFNeg() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NNF_NEG;
}
/**
* Indicates whether the term is a proof for (~ P Q) here Q is in negation
* normal form. <remarks> A proof for (~ P Q) where Q is in negation normal
* form.
*
* This proof object is only used if the parameter PROOF_MODE is 1.
*
* This proof object may have n antecedents. Each antecedent is a
* PR_DEF_INTRO. </remarks>
**/
public boolean isProofNNFStar() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NNF_STAR;
}
/**
* Indicates whether the term is a proof for (~ P Q) where Q is in
* conjunctive normal form. <remarks> A proof for (~ P Q) where Q is in
* conjunctive normal form. This proof object is only used if the parameter
* PROOF_MODE is 1. This proof object may have n antecedents. Each
* antecedent is a PR_DEF_INTRO. </remarks>
**/
public boolean isProofCNFStar() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_CNF_STAR;
}
/**
* Indicates whether the term is a proof for a Skolemization step <remarks>
* Proof for:
*
* [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y))) [sk]: (~ (exists x
* (p x y)) (p (sk y) y))
*
* This proof object has no antecedents. </remarks>
**/
public boolean isProofSkolemize() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_SKOLEMIZE;
}
/**
* Indicates whether the term is a proof by modus ponens for
* equi-satisfiability. <remarks> Modus ponens style rule for
* equi-satisfiability. T1: p T2: (~ p q) [mp~ T1 T2]: q </remarks>
**/
public boolean isProofModusPonensOEQ() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS_OEQ;
}
/**
* Indicates whether the term is a proof for theory lemma <remarks> Generic
* proof for theory lemmas.
*
* The theory lemma function comes with one or more parameters. The first
* parameter indicates the name of the theory. For the theory of arithmetic,
* additional parameters provide hints for checking the theory lemma. The
* hints for arithmetic are: - farkas - followed by rational coefficients.
* Multiply the coefficients to the inequalities in the lemma, add the
* (negated) inequalities and obtain a contradiction. - triangle-eq -
* Indicates a lemma related to the equivalence: (iff (= t1 t2) (and (&lt;=
* t1 t2) (&lt;= t2 t1))) - gcd-test - Indicates an integer linear
* arithmetic lemma that uses a gcd test. </remarks>
**/
public boolean isProofTheoryLemma() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_TH_LEMMA;
}
/**
* Indicates whether the term is of an array sort.
**/
public boolean isRelation() throws Z3Exception
{
return (Native.isApp(getContext().nCtx(), getNativeObject()) && Native
.getSortKind(getContext().nCtx(),
Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_RELATION_SORT
.toInt());
}
/**
* Indicates whether the term is an relation store <remarks> Insert a record
* into a relation. The function takes <code>n+1</code> arguments, where the
* first argument is the relation and the remaining <code>n</code> elements
* correspond to the <code>n</code> columns of the relation. </remarks>
**/
public boolean isRelationStore() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_STORE;
}
/**
* Indicates whether the term is an empty relation
**/
public boolean isEmptyRelation() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_EMPTY;
}
/**
* Indicates whether the term is a test for the emptiness of a relation
**/
public boolean isIsEmptyRelation() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_IS_EMPTY;
}
/**
* Indicates whether the term is a relational join
**/
public boolean isRelationalJoin() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_JOIN;
}
/**
* Indicates whether the term is the union or convex hull of two relations.
* <remarks>The function takes two arguments.</remarks>
**/
public boolean isRelationUnion() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_UNION;
}
/**
* Indicates whether the term is the widening of two relations <remarks>The
* function takes two arguments.</remarks>
**/
public boolean isRelationWiden() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_WIDEN;
}
/**
* Indicates whether the term is a projection of columns (provided as
* numbers in the parameters). <remarks>The function takes one
* argument.</remarks>
**/
public boolean isRelationProject() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_PROJECT;
}
/**
* Indicates whether the term is a relation filter <remarks> Filter
* (restrict) a relation with respect to a predicate. The first argument is
* a relation. The second argument is a predicate with free de-Brujin
* indices corresponding to the columns of the relation. So the first column
* in the relation has index 0. </remarks>
**/
public boolean isRelationFilter() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_FILTER;
}
/**
* Indicates whether the term is an intersection of a relation with the
* negation of another. <remarks> Intersect the first relation with respect
* to negation of the second relation (the function takes two arguments).
* Logically, the specification can be described by a function
*
* target = filter_by_negation(pos, neg, columns)
*
* where columns are pairs c1, d1, .., cN, dN of columns from pos and neg,
* such that target are elements in x in pos, such that there is no y in neg
* that agrees with x on the columns c1, d1, .., cN, dN. </remarks>
**/
public boolean isRelationNegationFilter() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_NEGATION_FILTER;
}
/**
* Indicates whether the term is the renaming of a column in a relation
* <remarks> The function takes one argument. The parameters contain the
* renaming as a cycle. </remarks>
**/
public boolean isRelationRename() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_RENAME;
}
/**
* Indicates whether the term is the complement of a relation
**/
public boolean isRelationComplement() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_COMPLEMENT;
}
/**
* Indicates whether the term is a relational select <remarks> Check if a
* record is an element of the relation. The function takes <code>n+1</code>
* arguments, where the first argument is a relation, and the remaining
* <code>n</code> arguments correspond to a record. </remarks>
**/
public boolean isRelationSelect() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_SELECT;
}
/**
* Indicates whether the term is a relational clone (copy) <remarks> Create
* a fresh copy (clone) of a relation. The function is logically the
* identity, but in the context of a register machine allows for terms of
* kind <seealso cref="IsRelationUnion"/> to perform destructive updates to
* the first argument. </remarks>
**/
public boolean isRelationClone() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_CLONE;
}
/**
* Indicates whether the term is of an array sort.
**/
public boolean isFiniteDomain() throws Z3Exception
{
return (Native.isApp(getContext().nCtx(), getNativeObject()) && Native
.getSortKind(getContext().nCtx(),
Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_FINITE_DOMAIN_SORT
.toInt());
}
/**
* Indicates whether the term is a less than predicate over a finite domain.
**/
public boolean isFiniteDomainLT() throws Z3Exception
{
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_FD_LT;
}
/**
* The de-Burijn index of a bound variable. <remarks> Bound variables are
* indexed by de-Bruijn indices. It is perhaps easiest to explain the
* meaning of de-Bruijn indices by indicating the compilation process from
* non-de-Bruijn formulas to de-Bruijn format. <code>
* abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
* abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
* abs1(x, x, n) = b_n
* abs1(y, x, n) = y
* abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
* abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
* </code> The last line is significant: the index of a bound variable is
* different depending on the scope in which it appears. The deeper x
* appears, the higher is its index. </remarks>
**/
public int getIndex() throws Z3Exception
{
if (!isVar())
throw new Z3Exception("Term is not a bound variable.");
return Native.getIndexValue(getContext().nCtx(), getNativeObject());
}
/**
* Constructor for Expr
**/
protected Expr(Context ctx)
{
super(ctx);
{
}
}
/**
* Constructor for Expr
**/
protected Expr(Context ctx, long obj) throws Z3Exception
{
super(ctx, obj);
{
}
}
void checkNativeObject(long obj) throws Z3Exception
{
if (!Native.isApp(getContext().nCtx(), obj) &&
Native.getAstKind(getContext().nCtx(), obj) != Z3_ast_kind.Z3_VAR_AST.toInt() &&
Native.getAstKind(getContext().nCtx(), obj) != Z3_ast_kind.Z3_QUANTIFIER_AST.toInt())
throw new Z3Exception("Underlying object is not a term");
super.checkNativeObject(obj);
}
static Expr create(Context ctx, FuncDecl f, Expr ... arguments)
throws Z3Exception
{
long obj = Native.mkApp(ctx.nCtx(), f.getNativeObject(),
AST.arrayLength(arguments), AST.arrayToNative(arguments));
return create(ctx, obj);
}
static Expr create(Context ctx, long obj) throws Z3Exception
{
Z3_ast_kind k = Z3_ast_kind.fromInt(Native.getAstKind(ctx.nCtx(), obj));
if (k == Z3_ast_kind.Z3_QUANTIFIER_AST)
return new Quantifier(ctx, obj);
long s = Native.getSort(ctx.nCtx(), obj);
Z3_sort_kind sk = Z3_sort_kind
.fromInt(Native.getSortKind(ctx.nCtx(), s));
if (Native.isAlgebraicNumber(ctx.nCtx(), obj)) // is this a numeral ast?
return new AlgebraicNum(ctx, obj);
if (Native.isNumeralAst(ctx.nCtx(), obj))
{
switch (sk)
{
case Z3_INT_SORT:
return new IntNum(ctx, obj);
case Z3_REAL_SORT:
return new RatNum(ctx, obj);
case Z3_BV_SORT:
return new BitVecNum(ctx, obj);
default: ;
}
}
switch (sk)
{
case Z3_BOOL_SORT:
return new BoolExpr(ctx, obj);
case Z3_INT_SORT:
return new IntExpr(ctx, obj);
case Z3_REAL_SORT:
return new RealExpr(ctx, obj);
case Z3_BV_SORT:
return new BitVecExpr(ctx, obj);
case Z3_ARRAY_SORT:
return new ArrayExpr(ctx, obj);
case Z3_DATATYPE_SORT:
return new DatatypeExpr(ctx, obj);
default: ;
}
return new Expr(ctx, obj);
}
}