mirror of
https://github.com/Z3Prover/z3
synced 2025-04-29 03:45:51 +00:00
555 lines
20 KiB
C++
555 lines
20 KiB
C++
/*---
|
|
Copyright (c 2022 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
polysat_solver.cpp
|
|
|
|
Abstract:
|
|
|
|
PolySAT interface to bit-vector
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2022-01-26
|
|
|
|
Notes:
|
|
The solver adds literals to polysat::core, calls propagation and check
|
|
The result of polysat::core::check is one of:
|
|
- is_sat: the model is complete
|
|
- is_unsat: there is a Boolean conflict. The SAT solver backtracks and resolves the conflict.
|
|
- new_eq: the solver adds a new equality literal to the SAT solver.
|
|
- new_lemma: there is a conflict, but it is resolved by backjumping and adding a lemma to the SAT solver.
|
|
- giveup: Polysat was unable to determine satisfiability.
|
|
|
|
--*/
|
|
|
|
|
|
#include "sat/smt/polysat_solver.h"
|
|
#include "sat/smt/euf_solver.h"
|
|
#include "sat/smt/polysat/ule_constraint.h"
|
|
#include "sat/smt/polysat/umul_ovfl_constraint.h"
|
|
|
|
namespace polysat {
|
|
|
|
solver::solver(euf::solver& ctx, theory_id id):
|
|
euf::th_euf_solver(ctx, symbol("bv"), id),
|
|
bv(ctx.get_manager()),
|
|
m_autil(ctx.get_manager()),
|
|
m_core(*this),
|
|
m_intblast(ctx),
|
|
m_lemma(ctx.get_manager())
|
|
{
|
|
m_bv_plugin = alloc(euf::bv_plugin, ctx.get_egraph());
|
|
std::function<void(euf::enode*)> ensure_th_var = [&](euf::enode* n) {
|
|
if (get_th_var(n) != euf::null_theory_var)
|
|
return;
|
|
auto v = mk_var(n);
|
|
rational val;
|
|
unsigned sz = 0;
|
|
if (bv.is_numeral(n->get_expr(), val, sz))
|
|
internalize_set(v, m_core.value(val, sz));
|
|
};
|
|
m_bv_plugin->set_ensure_th_var(ensure_th_var);
|
|
ctx.get_egraph().add_plugin(m_bv_plugin);
|
|
}
|
|
|
|
unsigned solver::get_bv_size(euf::enode* n) {
|
|
return bv.get_bv_size(n->get_expr());
|
|
}
|
|
|
|
unsigned solver::get_bv_size(theory_var v) {
|
|
return bv.get_bv_size(var2expr(v));
|
|
}
|
|
|
|
bool solver::unit_propagate() {
|
|
return m_core.propagate() || propagate_delayed_axioms();
|
|
}
|
|
|
|
sat::check_result solver::check() {
|
|
TRACE("euf", s().display(tout));
|
|
switch (m_core.check()) {
|
|
case sat::check_result::CR_DONE:
|
|
return sat::check_result::CR_DONE;
|
|
case sat::check_result::CR_CONTINUE:
|
|
return sat::check_result::CR_CONTINUE;
|
|
case sat::check_result::CR_GIVEUP:
|
|
return sat::check_result::CR_GIVEUP;
|
|
// return intblast();
|
|
}
|
|
UNREACHABLE();
|
|
return sat::check_result::CR_GIVEUP;
|
|
}
|
|
|
|
sat::check_result solver::intblast() {
|
|
if (!m.inc())
|
|
return sat::check_result::CR_GIVEUP;
|
|
switch (m_intblast.check_solver_state()) {
|
|
case l_true: {
|
|
pvar pv = m_core.next_var();
|
|
auto v = m_pddvar2var[pv];
|
|
auto n = var2expr(v);
|
|
auto val = m_intblast.get_value(n);
|
|
sat::literal lit = eq_internalize(n, bv.mk_numeral(val, get_bv_size(v)));
|
|
s().set_phase(lit);
|
|
return sat::check_result::CR_CONTINUE;
|
|
}
|
|
case l_false: {
|
|
IF_VERBOSE(2, verbose_stream() << "unsat core: " << m_intblast.unsat_core() << "\n");
|
|
auto core = m_intblast.unsat_core();
|
|
for (auto& lit : core)
|
|
lit.neg();
|
|
s().add_clause(core.size(), core.data(), sat::status::th(true, get_id(), nullptr));
|
|
return sat::check_result::CR_CONTINUE;
|
|
}
|
|
case l_undef:
|
|
return sat::check_result::CR_GIVEUP;
|
|
}
|
|
UNREACHABLE();
|
|
return sat::check_result::CR_GIVEUP;
|
|
}
|
|
|
|
void solver::asserted(literal l) {
|
|
TRACE("bv", tout << "asserted: " << l << "\n";);
|
|
atom* a = get_bv2a(l.var());
|
|
if (!a)
|
|
return;
|
|
force_push();
|
|
m_core.assign_eh(a->m_index, l.sign());
|
|
}
|
|
|
|
void solver::set_conflict(dependency_vector const& deps, char const* hint_info) {
|
|
++m_stats.m_num_conflicts;
|
|
if (inconsistent())
|
|
return;
|
|
auto [lits, eqs] = explain_deps(deps);
|
|
proof_hint* hint = nullptr;
|
|
if (ctx.use_drat() && hint_info)
|
|
hint = mk_proof_hint(hint_info, lits, eqs);
|
|
auto ex = euf::th_explain::conflict(*this, lits, eqs, hint);
|
|
TRACE("bv", tout << "conflict: " << lits << " ";
|
|
for (auto [a, b] : eqs) tout << ctx.bpp(a) << " == " << ctx.bpp(b) << " ";
|
|
tout << "\n"; s().display(tout));
|
|
validate_conflict(lits, eqs);
|
|
ctx.set_conflict(ex);
|
|
}
|
|
|
|
void solver::explain_dep(dependency const& d, euf::enode_pair_vector& eqs, sat::literal_vector& core) {
|
|
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
|
|
eqs.push_back({ a, b });
|
|
};
|
|
|
|
if (d.is_axiom())
|
|
;
|
|
else if (d.is_bool_var()) {
|
|
auto bv = d.bool_var();
|
|
auto lit = sat::literal(bv, s().value(bv) == l_false);
|
|
core.push_back(lit);
|
|
}
|
|
else if (d.is_fixed_claim()) {
|
|
auto const& o = d.fixed();
|
|
explain_fixed(o.v, o, consume);
|
|
}
|
|
else if (d.is_offset_claim()) {
|
|
auto const& offs = d.offset();
|
|
explain_slice(offs.v, offs.w, offs.offset, consume);
|
|
}
|
|
else {
|
|
auto const [v1, v2] = d.eq();
|
|
euf::enode* const n1 = var2enode(v1);
|
|
euf::enode* const n2 = var2enode(v2);
|
|
VERIFY(n1->get_root() == n2->get_root());
|
|
eqs.push_back(euf::enode_pair(n1, n2));
|
|
}
|
|
}
|
|
|
|
std::pair<sat::literal_vector, euf::enode_pair_vector> solver::explain_deps(dependency_vector const& deps) {
|
|
sat::literal_vector core;
|
|
euf::enode_pair_vector eqs;
|
|
for (auto d : deps)
|
|
explain_dep(d, eqs, core);
|
|
|
|
|
|
IF_VERBOSE(10,
|
|
verbose_stream() << "explain\n";
|
|
for (auto lit : core)
|
|
verbose_stream() << " " << lit << ": " << mk_ismt2_pp(literal2expr(lit), m) << " " << s().value(lit) << "\n";
|
|
for (auto const& [n1, n2] : eqs)
|
|
verbose_stream() << " " << ctx.bpp(n1) << " == " << ctx.bpp(n2) << "\n";);
|
|
DEBUG_CODE({
|
|
for (auto lit : core)
|
|
SASSERT(s().value(lit) == l_true);
|
|
for (auto const& [n1, n2] : eqs)
|
|
SASSERT(n1->get_root() == n2->get_root());
|
|
});
|
|
|
|
return { core, eqs };
|
|
}
|
|
|
|
// Create an equality literal that represents the value assignment
|
|
// Prefer case split to true.
|
|
// The equality gets added in a callback using asserted().
|
|
lbool solver::add_eq_literal(pvar pvar, rational const& val, dependency& d) {
|
|
auto v = m_pddvar2var[pvar];
|
|
auto n = var2enode(v);
|
|
auto eq = eq_internalize(n->get_expr(), bv.mk_numeral(val, get_bv_size(v)));
|
|
euf::enode* eqn = ctx.bool_var2enode(eq.var());
|
|
if (eqn->get_th_var(get_id()) == euf::null_theory_var)
|
|
mk_var(eqn);
|
|
pdd p = m_core.var(pvar);
|
|
pdd q = m_core.value(val, m_core.size(pvar));
|
|
auto sc = m_core.eq(p, q);
|
|
s().set_phase(eq);
|
|
ctx.mark_relevant(eq);
|
|
d = dependency(eq.var());
|
|
auto value = s().value(eq);
|
|
if (!get_bv2a(eq.var())) {
|
|
auto a = mk_atom(eq.var(), sc);
|
|
if (value == l_false)
|
|
m_core.assign_eh(a->m_index, true);
|
|
}
|
|
return s().value(eq);
|
|
}
|
|
|
|
void solver::new_eq_eh(euf::th_eq const& eq) {
|
|
auto v1 = eq.v1(), v2 = eq.v2();
|
|
euf::enode* n = var2enode(v1);
|
|
if (!bv.is_bv(n->get_expr()))
|
|
return;
|
|
|
|
m_var_eqs.setx(m_var_eqs_head, {v1, v2}, {v1, v2});
|
|
ctx.push(value_trail<unsigned>(m_var_eqs_head));
|
|
m_var_eqs_head++;
|
|
pdd p = var2pdd(v1);
|
|
pdd q = var2pdd(v2);
|
|
auto d = dependency(v1, v2);
|
|
constraint_id id = eq_constraint(p, q, false, d);
|
|
TRACE("bv", tout << ctx.bpp(n) << " == " << ctx.bpp(var2enode(v2)) << " " << d << "\n");
|
|
m_core.assign_eh(id, false);
|
|
|
|
}
|
|
|
|
void solver::new_diseq_eh(euf::th_eq const& ne) {
|
|
euf::theory_var v1 = ne.v1(), v2 = ne.v2();
|
|
euf::enode* n = var2enode(v1);
|
|
if (!bv.is_bv(n->get_expr()))
|
|
return;
|
|
pdd p = var2pdd(v1);
|
|
pdd q = var2pdd(v2);
|
|
sat::literal eq = expr2literal(ne.eq());
|
|
auto d = dependency(eq.var());
|
|
auto id = eq_constraint(p, q, true, d);
|
|
TRACE("bv", tout << eq << " := " << s().value(eq) << " @" << s().scope_lvl() << "\n");
|
|
m_core.assign_eh(id, true);
|
|
}
|
|
|
|
// Core uses the propagate callback to add unit propagations to the trail.
|
|
// The polysat::solver takes care of translating signed constraints into expressions, which translate into literals.
|
|
// Everything goes over expressions/literals. polysat::core is not responsible for replaying expressions.
|
|
|
|
dependency solver::propagate(signed_constraint sc, dependency_vector const& deps, char const* hint_info) {
|
|
++m_stats.m_num_propagations;
|
|
TRACE("bv", sc.display(tout << "propagate ") << "\n");
|
|
sat::literal lit = ctx.mk_literal(constraint2expr(sc));
|
|
if (s().value(lit) == l_true)
|
|
return dependency(lit.var());
|
|
auto [core, eqs] = explain_deps(deps);
|
|
proof_hint* hint = nullptr;
|
|
if (ctx.use_drat() && hint_info) {
|
|
core.push_back(~lit);
|
|
hint = mk_proof_hint(hint_info, core, eqs);
|
|
core.pop_back();
|
|
}
|
|
if (s().value(lit) == l_false) {
|
|
verbose_stream() << "contradictory propagation " << sc << " <- " << deps << "\n";
|
|
}
|
|
auto ex = euf::th_explain::propagate(*this, core, eqs, lit, hint);
|
|
validate_propagate(lit, core, eqs);
|
|
ctx.propagate(lit, ex);
|
|
return dependency(lit.var());
|
|
}
|
|
|
|
void solver::propagate_eq(pvar pv, rational const& val, dependency const& d) {
|
|
auto v = m_pddvar2var[pv];
|
|
auto a = var2enode(v);
|
|
auto bval = bv.mk_numeral(val, get_bv_size(v));
|
|
ctx.internalize(bval);
|
|
auto b = ctx.get_enode(bval);
|
|
if (a->get_root() == b->get_root())
|
|
return;
|
|
proof_hint* hint = nullptr;
|
|
sat::literal_vector core;
|
|
euf::enode_pair_vector eqs;
|
|
explain_dep(d, eqs, core);
|
|
if (ctx.use_drat())
|
|
hint = mk_proof_hint("propagate-eq", core, eqs);
|
|
auto exp = euf::th_explain::propagate(*this, core, eqs, a, b, hint);
|
|
ctx.propagate(a, b, exp);
|
|
}
|
|
|
|
unsigned solver::level(dependency const& d) {
|
|
if (d.is_bool_var())
|
|
return s().lvl(d.bool_var());
|
|
sat::literal_vector lits;
|
|
euf::enode_pair_vector eqs;
|
|
explain_dep(d, eqs, lits);
|
|
for (auto [n1, n2] : eqs)
|
|
ctx.get_eq_antecedents(n1, n2, lits);
|
|
unsigned level = 0;
|
|
for (auto lit : lits)
|
|
level = std::max(level, s().lvl(lit));
|
|
return level;
|
|
}
|
|
|
|
void solver::propagate(dependency const& d, bool sign, dependency_vector const& deps, char const* hint_info) {
|
|
++m_stats.m_num_propagations;
|
|
TRACE("bv", tout << "propagate " << d << " " << sign << "\n");
|
|
auto [core, eqs] = explain_deps(deps);
|
|
SASSERT(d.is_bool_var() || d.is_eq() || d.is_axiom());
|
|
proof_hint* hint = nullptr;
|
|
|
|
if (d.is_axiom()) {
|
|
if (sign) {
|
|
if (ctx.use_drat() && hint_info)
|
|
hint = mk_proof_hint(hint_info, core, eqs);
|
|
auto ex = euf::th_explain::conflict(*this, core, eqs, hint);
|
|
validate_conflict(core, eqs);
|
|
ctx.set_conflict(ex);
|
|
}
|
|
}
|
|
else if (d.is_bool_var()) {
|
|
auto bv = d.bool_var();
|
|
auto lit = sat::literal(bv, sign);
|
|
if (s().value(lit) == l_true)
|
|
return;
|
|
if (ctx.use_drat() && hint_info) {
|
|
core.push_back(~lit);
|
|
hint = mk_proof_hint(hint_info, core, eqs);
|
|
core.pop_back();
|
|
}
|
|
auto ex = euf::th_explain::propagate(*this, core, eqs, lit, hint);
|
|
validate_propagate(lit, core, eqs);
|
|
ctx.propagate(lit, ex);
|
|
}
|
|
else if (sign) {
|
|
SASSERT(d.is_eq());
|
|
auto const [v1, v2] = d.eq();
|
|
// equalities are always asserted so a negative propagation is a conflict.
|
|
auto n1 = var2enode(v1);
|
|
auto n2 = var2enode(v2);
|
|
eqs.push_back({ n1, n2 });
|
|
if (ctx.use_drat() && hint_info)
|
|
hint = mk_proof_hint(hint_info, core, eqs);
|
|
auto ex = euf::th_explain::conflict(*this, core, eqs, hint);
|
|
validate_conflict(core, eqs);
|
|
ctx.set_conflict(ex);
|
|
}
|
|
}
|
|
|
|
bool solver::inconsistent() const {
|
|
return s().inconsistent();
|
|
}
|
|
|
|
trail_stack& solver::trail() {
|
|
return ctx.get_trail_stack();
|
|
}
|
|
|
|
bool solver::add_axiom(char const* name, constraint_or_dependency const* begin, constraint_or_dependency const* end, bool is_redundant) {
|
|
++m_stats.m_num_axioms;
|
|
if (inconsistent())
|
|
return false;
|
|
TRACE("bv", tout << "add " << name << "\n");
|
|
sat::literal_vector lits;
|
|
euf::enode_pair_vector eqs;
|
|
for (auto it = begin; it != end; ++it) {
|
|
auto const& e = *it;
|
|
if (std::holds_alternative<dependency>(e)) {
|
|
auto d = *std::get_if<dependency>(&e);
|
|
SASSERT(!d.is_null());
|
|
explain_dep(d, eqs, lits);
|
|
}
|
|
else if (std::holds_alternative<signed_constraint>(e))
|
|
lits.push_back(~ctx.mk_literal(constraint2expr(*std::get_if<signed_constraint>(&e))));
|
|
}
|
|
for (auto [n1, n2] : eqs)
|
|
ctx.get_eq_antecedents(n1, n2, lits);
|
|
proof_hint* hint = nullptr;
|
|
if (ctx.use_drat())
|
|
hint = mk_proof_hint(name, lits, {});
|
|
for (auto& lit : lits)
|
|
lit.neg();
|
|
for (auto lit : lits)
|
|
if (s().value(lit) == l_true) {
|
|
TRACE("bv", tout << "literal is true " << ctx.literal2expr(lit) << "\n");
|
|
return false;
|
|
}
|
|
TRACE("bv", display_clause(name, tout, lits));
|
|
IF_VERBOSE(1, display_clause(name, verbose_stream(), lits));
|
|
validate_axiom(lits);
|
|
s().add_clause(lits.size(), lits.data(), sat::status::th(is_redundant, get_id(), hint));
|
|
return true;
|
|
}
|
|
|
|
void solver::add_axiom(char const* name, sat::literal const* begin, sat::literal const* end, bool is_redundant) {
|
|
++m_stats.m_num_axioms;
|
|
sat::literal_vector lits;
|
|
validate_axiom(sat::literal_vector(static_cast<unsigned>(end - begin), begin));
|
|
for (auto it = begin; it != end; ++it) {
|
|
auto lit = *it;
|
|
if (s().value(lit) == l_true && s().lvl(lit) == 0)
|
|
return;
|
|
if (s().value(lit) == l_false && s().lvl(lit) == 0)
|
|
continue;
|
|
lits.push_back(lit);
|
|
}
|
|
|
|
proof_hint* hint = nullptr;
|
|
if (ctx.use_drat()) {
|
|
sat::literal_vector core;
|
|
for (auto lit : lits)
|
|
core.push_back(~lit);
|
|
hint = mk_proof_hint(name, core, {});
|
|
}
|
|
IF_VERBOSE(3, display_clause(name, verbose_stream(), lits));
|
|
s().add_clause(lits.size(), lits.data(), sat::status::th(is_redundant, get_id(), hint));
|
|
}
|
|
|
|
void solver::add_axiom(char const* name, sat::literal_vector const& clause, bool is_redundant) {
|
|
add_axiom(name, clause.begin(), clause.end(), is_redundant);
|
|
|
|
}
|
|
|
|
void solver::add_axiom(char const* name, std::initializer_list<sat::literal> const& clause) {
|
|
add_axiom(name, clause.begin(), clause.end(), false);
|
|
}
|
|
|
|
void solver::equiv_axiom(char const* name, sat::literal a, sat::literal b) {
|
|
add_axiom(name, { a, ~b });
|
|
add_axiom(name, { ~a, b });
|
|
}
|
|
|
|
void solver::get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) {
|
|
auto& jst = euf::th_explain::from_index(idx);
|
|
ctx.get_th_antecedents(l, jst, r, probing);
|
|
}
|
|
|
|
expr_ref solver::constraint2expr(signed_constraint const& sc) {
|
|
expr_ref result(m);
|
|
if (sc.is_always_false())
|
|
return expr_ref(m.mk_false(), m);
|
|
if (sc.is_always_true())
|
|
return expr_ref(m.mk_true(), m);
|
|
|
|
switch (sc.op()) {
|
|
case ckind_t::ule_t: {
|
|
auto p = sc.to_ule().lhs();
|
|
auto q = sc.to_ule().rhs();
|
|
pdd x = p;
|
|
if (q.is_zero() && p.has_unit(x)) {
|
|
auto l = pdd2expr(x);
|
|
auto r = pdd2expr(x - p);
|
|
result = m.mk_eq(l, r);
|
|
}
|
|
else {
|
|
auto l = pdd2expr(p);
|
|
auto r = pdd2expr(q);
|
|
if (q.is_zero())
|
|
result = m.mk_eq(l, r);
|
|
else
|
|
result = bv.mk_ule(l, r);
|
|
}
|
|
if (sc.sign())
|
|
result = m.mk_not(result);
|
|
return result;
|
|
}
|
|
case ckind_t::umul_ovfl_t: {
|
|
auto l = pdd2expr(sc.to_umul_ovfl().p());
|
|
auto r = pdd2expr(sc.to_umul_ovfl().q());
|
|
result = bv.mk_bvumul_no_ovfl(l, r);
|
|
if (!sc.sign())
|
|
result = m.mk_not(result);
|
|
return result;
|
|
}
|
|
case ckind_t::op_t:
|
|
UNREACHABLE();
|
|
break;
|
|
case ckind_t::smul_fl_t:
|
|
NOT_IMPLEMENTED_YET();
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
expr_ref solver::pdd2expr(pdd const& p) {
|
|
|
|
auto mk_num = [&](rational const& c) {
|
|
return bv.mk_numeral(c, p.power_of_2());
|
|
};
|
|
|
|
auto mk_var = [&](pvar v) {
|
|
return var2expr(m_pddvar2var[v]);
|
|
};
|
|
|
|
if (p.is_val())
|
|
return expr_ref(mk_num(p.val()), m);
|
|
|
|
expr_ref_vector args(m);
|
|
for (auto const& mon : p) {
|
|
auto c = mon.coeff;
|
|
if (mon.vars.empty())
|
|
args.push_back(mk_num(c));
|
|
else if (mon.coeff == 1 && mon.vars.size() == 1)
|
|
args.push_back(mk_var(mon.vars[0]));
|
|
else if (mon.vars.size() == 1)
|
|
args.push_back(bv.mk_bv_mul(mk_num(c), mk_var(mon.vars[0])));
|
|
else {
|
|
expr_ref_vector args2(m);
|
|
for (auto v : mon.vars)
|
|
args2.push_back(mk_var(v));
|
|
if (c == 1)
|
|
args.push_back(bv.mk_bv_mul(args2));
|
|
else
|
|
args.push_back(bv.mk_bv_mul(mk_num(c), bv.mk_bv_mul(args2)));
|
|
}
|
|
}
|
|
expr_ref r(m);
|
|
if (args.size() == 1)
|
|
r = args.get(0);
|
|
else
|
|
r = bv.mk_bv_add(args);
|
|
return r;
|
|
}
|
|
|
|
expr* solver::proof_hint::get_hint(euf::solver& s) const {
|
|
ast_manager& m = s.get_manager();
|
|
family_id fid = m.get_family_id("bv");
|
|
solver& p = dynamic_cast<solver&>(*s.fid2solver(fid));
|
|
expr_ref_vector args(m);
|
|
args.push_back(m.mk_const(name, m.mk_proof_sort()));
|
|
for (unsigned i = m_lit_head; i < m_lit_tail; ++i)
|
|
args.push_back(s.literal2expr(p.m_mk_hint.lit(i)));
|
|
for (unsigned i = m_eq_head; i < m_eq_tail; ++i)
|
|
args.push_back(s.mk_eq(p.m_mk_hint.eq(i).first, p.m_mk_hint.eq(i).second));
|
|
return m.mk_app(symbol("polysat"), args.size(), args.data(), m.mk_proof_sort());
|
|
}
|
|
|
|
void solver::proof_hint_builder::init(euf::solver& ctx, char const* name) {
|
|
ctx.push(value_trail<unsigned>(m_eq_tail));
|
|
ctx.push(value_trail<unsigned>(m_lit_tail));
|
|
m_name = name;
|
|
reset();
|
|
}
|
|
|
|
solver::proof_hint* solver::proof_hint_builder::mk(euf::solver& ctx) {
|
|
return new (ctx.get_region()) proof_hint(m_name, m_lit_head, m_lit_tail, m_eq_head, m_eq_tail);
|
|
}
|
|
|
|
solver::proof_hint* solver::mk_proof_hint(char const* name, sat::literal_vector const& lits, euf::enode_pair_vector const& eqs) {
|
|
m_mk_hint.init(ctx, name);
|
|
for (auto lit : lits)
|
|
m_mk_hint.add_lit(lit);
|
|
for (auto [a,b] : eqs)
|
|
m_mk_hint.add_eq(a,b);
|
|
return m_mk_hint.mk(ctx);
|
|
}
|
|
}
|