mirror of
https://github.com/Z3Prover/z3
synced 2025-10-26 09:24:36 +00:00
* Added function to select the next variable to split on * Fixed typo * Small fixes * uint -> int * Fixed missing assignment for binary clauses * Memory leak in .NET user-propagator The user-propagator object has to be manually disposed (IDisposable), otherwise it stays in memory forever, as it cannot be garbage collected automatically * Throw an exception if variable passed to decide is already assigned instead of running in an assertion violation * Update (not compiling yet) * #6429 * remove ternary clause optimization Removing ternary clause optimization from sat_solver simplifies special case handling of ternary clauses throughout the sat solver and dependent solvers (pb_solver). Benchmarking on QF_BV suggests the ternary clause optimization does not have any effect. While removing ternary clause optimization two bugs in unit propagation were also uncovered: it missed propagations when the only a single undef literal remained in the non-watched literals and it did not update blocked literals in cases where it could in the watch list. These performance bugs were for general clauses, ternary clause propagation did not miss propagations (and don't use blocked literals), but fixing these issues for general clauses appear to have made ternary clause optimization irrelevant based on what was measured. * Update: Missing data-structures (still not compiling) * Nearly compiling * Some missing arguments * Polishing * Only conflicts/propagations/justifications are missing for making it compile * Added propagation (justifications for them are still missing) * Use the right deallocation * Use Z3's memory allocation system * Ported "seen" * Polishing * Added 64-bit "1" counting * More polishing * minor fixes - ensure mk_extract performs simplification to distribute over extract and removing extract if the range is the entire bit-vector - ensure bool_rewriter simplifeis disjunctions when applicable. * adding simplifiers layer simplifiers layer is a common substrate for global non-incremental and incremental processing. The first two layers are new, but others are to be ported form tactics. - bv::slice - rewrites equations to cut-dice-slice bit-vector extractions until they align. It creates opportunities for rewriting portions of bit-vectors to common sub-expressions, including values. - euf::completion - generalizes the KB simplifcation from asserted formulas to use the E-graph to establish a global and order-independent canonization. The interface dependent_expr_simplifier is amenable to forming tactics. Plugins for asserted-formulas is also possible but not yet realized. * Create bv_slice_tactic.cpp missing file * adding virtual destructor Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * Added 64-bit "1" counting (#6434) * Memory leak in .NET user-propagator The user-propagator object has to be manually disposed (IDisposable), otherwise it stays in memory forever, as it cannot be garbage collected automatically * Throw an exception if variable passed to decide is already assigned instead of running in an assertion violation * Added 64-bit "1" counting * remove incorrect assertion Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * Added limit to "visit" to allow detecting multiple visits (#6435) * Memory leak in .NET user-propagator The user-propagator object has to be manually disposed (IDisposable), otherwise it stays in memory forever, as it cannot be garbage collected automatically * Throw an exception if variable passed to decide is already assigned instead of running in an assertion violation * Added limit to "visit" to allow detecting multiple visits * Putting visit in a separate class (Reason: We will probably need two of them in the sat::solver) * Bugfix * init solve_eqs * working on solve_eqs * Update .gitignore * wip - converting the equation solver as a simplifier * make visited_helper independent of literals re-introduce shorthands in sat::solver for visited and have them convert literals to unsigned. * build fix * move model and proof converters to self-contained module * Create solve_eqs2_tactic.h * add converters module to python build * move tactic_params to params * move more converters * move horn_subsume_model_converter to ast/converters * add initial stubs for model reconstruction trail * fixing build Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * fixes #6439 #6436 * It's compiling (However, two important functions are commented out) Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
357 lines
12 KiB
C++
357 lines
12 KiB
C++
/*++
|
|
Copyright (c) 2020 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
sat_proof_trim.cpp
|
|
|
|
Abstract:
|
|
|
|
proof replay and trim
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner 2023-10-04
|
|
|
|
Notes:
|
|
|
|
|
|
--*/
|
|
|
|
#include "sat/sat_proof_trim.h"
|
|
|
|
namespace sat {
|
|
|
|
|
|
/**
|
|
Pseudo-code from Gurfinkel, Vizel, FMCAD 2014
|
|
Input: trail (a0,d0), ..., (an,dn) = ({},bot)
|
|
Output: reduced trail - result
|
|
*/
|
|
|
|
unsigned_vector proof_trim::trim() {
|
|
unsigned_vector result;
|
|
m_core_literals.reset();
|
|
m_core_literals.insert(literal_vector());
|
|
m_propagated.resize(num_vars(), false);
|
|
for (unsigned i = m_trail.size(); i-- > 0; ) {
|
|
auto const& [id, cl, clp, is_add, is_initial] = m_trail[i];
|
|
if (!is_add) {
|
|
revive(cl, clp);
|
|
continue;
|
|
}
|
|
IF_VERBOSE(10, s.display(verbose_stream()));
|
|
prune_trail(cl, clp);
|
|
IF_VERBOSE(10, verbose_stream() << cl << " " << in_core(cl, clp) << ": "; for (auto const& c : m_core_literals) verbose_stream() << "{" << c << "} ");
|
|
IF_VERBOSE(10, s.display(verbose_stream() << "\n"));
|
|
del(cl, clp);
|
|
if (!in_core(cl, clp))
|
|
continue;
|
|
result.push_back(id);
|
|
if (is_initial)
|
|
continue;
|
|
conflict_analysis_core(cl, clp);
|
|
}
|
|
result.reverse();
|
|
return result;
|
|
}
|
|
|
|
void proof_trim::del(literal_vector const& cl, clause* cp) {
|
|
if (cp)
|
|
s.detach_clause(*cp);
|
|
else
|
|
del(cl);
|
|
}
|
|
|
|
bool proof_trim::match_clause(literal_vector const& cl, literal l1, literal l2) const {
|
|
return cl.size() == 2 && ((l1 == cl[0] && l2 == cl[1]) || (l1 == cl[1] && l2 == cl[0]));
|
|
}
|
|
|
|
bool proof_trim::match_clause(literal_vector const& cl, literal l1, literal l2, literal l3) const {
|
|
return cl.size() == 3 &&
|
|
((l1 == cl[0] && l2 == cl[1] && l3 == cl[2]) ||
|
|
(l1 == cl[0] && l2 == cl[2] && l3 == cl[1]) ||
|
|
(l1 == cl[1] && l2 == cl[0] && l3 == cl[2]) ||
|
|
(l1 == cl[1] && l2 == cl[2] && l3 == cl[0]) ||
|
|
(l1 == cl[2] && l2 == cl[1] && l3 == cl[0]) ||
|
|
(l1 == cl[2] && l2 == cl[0] && l3 == cl[1]));
|
|
}
|
|
|
|
/**
|
|
* cl is on the trail if there is some literal l that is implied by cl
|
|
* Remove all clauses after cl that are in the cone of influence of cl.
|
|
* The coi is defined inductively: C is in coi of cl if it contains ~l
|
|
* or it contains ~l' where l' is implied by a clause in the coi of cl.
|
|
* Possible optimization:
|
|
* - check if clause contains a literal that is on implied on the trail
|
|
* if it doesn't contain any such literal, bypass the trail adjustment.
|
|
*/
|
|
|
|
void proof_trim::prune_trail(literal_vector const& cl, clause* cp) {
|
|
m_in_clause.reset();
|
|
m_in_coi.reset();
|
|
|
|
if (cl.empty())
|
|
return;
|
|
|
|
for (literal lit : cl)
|
|
m_in_clause.insert(lit.index());
|
|
|
|
auto unassign_literal = [&](literal l) {
|
|
m_in_coi.insert((~l).index());
|
|
s.m_assignment[l.index()] = l_undef;
|
|
s.m_assignment[(~l).index()] = l_undef;
|
|
};
|
|
|
|
bool on_trail = false;
|
|
unsigned j = 0;
|
|
for (unsigned i = 0; i < s.trail_size(); ++i) {
|
|
literal l = s.trail_literal(i);
|
|
if (m_in_clause.contains(l.index())) {
|
|
SASSERT(!on_trail);
|
|
on_trail = true;
|
|
unassign_literal(l);
|
|
continue;
|
|
}
|
|
if (!on_trail) {
|
|
s.m_trail[j++] = s.m_trail[i];
|
|
continue;
|
|
}
|
|
|
|
auto js = s.get_justification(l);
|
|
bool in_coi = false;
|
|
if (js.is_clause())
|
|
for (literal lit : s.get_clause(j))
|
|
in_coi |= m_in_coi.contains(lit.index());
|
|
else if (js.is_binary_clause())
|
|
in_coi = m_in_coi.contains(js.get_literal().index());
|
|
else
|
|
UNREACHABLE(); // approach does not work for external justifications
|
|
|
|
if (in_coi)
|
|
unassign_literal(l);
|
|
else
|
|
s.m_trail[j++] = s.m_trail[i];
|
|
}
|
|
s.m_trail.shrink(j);
|
|
s.m_inconsistent = false;
|
|
s.m_qhead = s.m_trail.size();
|
|
s.propagate(false);
|
|
}
|
|
|
|
|
|
/**
|
|
The current state is in conflict.
|
|
Chase justifications for conflict to extract clauses that are in coi of conflict.
|
|
|
|
|
|
Assume:
|
|
F | G, ~C |- []
|
|
Let T (trail) be the extension of G, ~C that derives the empty clause.
|
|
T := G, ~C, l1:j1, l2:j2, ..., lk:jk
|
|
The goal is to extract clauses in T that are used to derive C.
|
|
This is achieved by collecting all literals from j1, j2, ... jk
|
|
and the conflict clause that are at level below ~C and using the clauses that justify those literals.
|
|
|
|
|
|
Example:
|
|
C = c or d or e
|
|
G = a
|
|
F = { ~a or ~b, c or d or b, ... }
|
|
T = ~b : ~a or ~b, ~c: D ~d : D , ~e : D, b : c or d or b
|
|
where D is a decision marker (justification::NONE)
|
|
The conflict depends on the first two clauses in F.
|
|
|
|
All literals that are are used in clauses leading to the conflict are
|
|
queried for their explanation. Their explanation is added to the clauses.
|
|
|
|
*/
|
|
void proof_trim::conflict_analysis_core(literal_vector const& cl, clause* cp) {
|
|
IF_VERBOSE(3, verbose_stream() << "core " << cl << "\n");
|
|
|
|
unsigned trail_size0 = s.m_trail.size();
|
|
if (!cl.empty()) {
|
|
SASSERT(!s.inconsistent());
|
|
s.push();
|
|
unsigned lvl = s.scope_lvl();
|
|
for (auto lit : cl)
|
|
s.assign(~lit, justification(lvl));
|
|
trail_size0 = s.m_trail.size();
|
|
s.propagate(false);
|
|
if (!s.inconsistent()) {
|
|
s.m_qhead = 0;
|
|
s.propagate(false);
|
|
}
|
|
if (!s.inconsistent())
|
|
IF_VERBOSE(0, s.display(verbose_stream()));
|
|
for (unsigned i = trail_size0; i < s.m_trail.size(); ++i)
|
|
m_propagated[s.m_trail[i].var()] = true;
|
|
}
|
|
SASSERT(s.inconsistent());
|
|
IF_VERBOSE(3, verbose_stream() << s.m_not_l << " " << s.m_conflict << "\n");
|
|
if (s.m_not_l != null_literal) {
|
|
add_core(~s.m_not_l, s.m_conflict);
|
|
add_dependency(s.m_not_l);
|
|
}
|
|
add_dependency(s.m_conflict);
|
|
|
|
for (unsigned i = s.m_trail.size(); i-- > trail_size0; ) {
|
|
bool_var v = s.m_trail[i].var();
|
|
m_propagated[v] = false;
|
|
if (!s.is_marked(v))
|
|
continue;
|
|
add_core(v);
|
|
s.reset_mark(v);
|
|
add_dependency(s.get_justification(v));
|
|
}
|
|
if (!cl.empty())
|
|
s.pop(1);
|
|
}
|
|
|
|
void proof_trim::add_dependency(literal lit) {
|
|
bool_var v = lit.var();
|
|
if (m_propagated[v]) // literal was propagated after assuming ~C
|
|
s.mark(v);
|
|
else if (s.lvl(v) == 0) // literal depends on level 0, it is not assumed by ~C
|
|
// inefficient for repeated insertions ?
|
|
add_core(v);
|
|
}
|
|
|
|
void proof_trim::add_dependency(justification j) {
|
|
switch (j.get_kind()) {
|
|
case justification::BINARY:
|
|
add_dependency(j.get_literal());
|
|
break;
|
|
case justification::CLAUSE:
|
|
for (auto lit : s.get_clause(j))
|
|
if (s.value(lit) == l_false)
|
|
add_dependency(lit);
|
|
break;
|
|
case justification::EXT_JUSTIFICATION:
|
|
UNREACHABLE();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void proof_trim::add_core(bool_var v) {
|
|
auto j = s.get_justification(v);
|
|
literal lit = literal(v, s.value(v) == l_false);
|
|
add_core(lit, j);
|
|
}
|
|
|
|
|
|
void proof_trim::add_core(literal l, justification j) {
|
|
m_clause.reset();
|
|
switch (j.get_kind()) {
|
|
case justification::NONE:
|
|
m_clause.push_back(l);
|
|
break;
|
|
case justification::BINARY:
|
|
m_clause.push_back(l);
|
|
m_clause.push_back(j.get_literal());
|
|
break;
|
|
case justification::CLAUSE:
|
|
s.get_clause(j).mark_used();
|
|
IF_VERBOSE(3, verbose_stream() << "add core " << s.get_clause(j) << "\n");
|
|
return;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
std::sort(m_clause.begin(), m_clause.end());
|
|
IF_VERBOSE(3, verbose_stream() << "add core " << m_clause << "\n");
|
|
m_core_literals.insert(m_clause);
|
|
if (s.lvl(l) == 0) {
|
|
m_clause.reset();
|
|
m_clause.push_back(l);
|
|
m_core_literals.insert(m_clause);
|
|
}
|
|
}
|
|
|
|
bool proof_trim::in_core(literal_vector const& cl, clause* cp) const {
|
|
if (cp)
|
|
return cp->was_used();
|
|
else
|
|
return m_core_literals.contains(cl);
|
|
}
|
|
|
|
void proof_trim::revive(literal_vector const& cl, clause* cp) {
|
|
if (cp)
|
|
s.attach_clause(*cp);
|
|
else
|
|
s.mk_clause(cl, status::redundant());
|
|
}
|
|
|
|
clause* proof_trim::del(literal_vector const& cl) {
|
|
clause* cp = nullptr;
|
|
IF_VERBOSE(3, verbose_stream() << "del: " << cl << "\n");
|
|
if (cl.size() == 2) {
|
|
s.detach_bin_clause(cl[0], cl[1], true);
|
|
return cp;
|
|
}
|
|
auto* e = m_clauses.find_core(cl);
|
|
if (!e)
|
|
return cp;
|
|
auto& v = e->get_data().m_value;
|
|
if (!v.empty()) {
|
|
cp = v.back();
|
|
IF_VERBOSE(3, verbose_stream() << "del: " << *cp << "\n");
|
|
s.detach_clause(*cp);
|
|
v.pop_back();
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
void proof_trim::save(literal_vector const& lits, clause* cl) {
|
|
if (!cl)
|
|
return;
|
|
IF_VERBOSE(3, verbose_stream() << "add: " << *cl << "\n");
|
|
auto& v = m_clauses.insert_if_not_there(lits, clause_vector());
|
|
v.push_back(cl);
|
|
}
|
|
|
|
proof_trim::proof_trim(params_ref const& p, reslimit& lim):
|
|
s(p, lim) {
|
|
s.set_trim();
|
|
}
|
|
|
|
void proof_trim::assume(unsigned id, bool is_initial) {
|
|
std::sort(m_clause.begin(), m_clause.end());
|
|
if (unit_or_binary_occurs())
|
|
return;
|
|
IF_VERBOSE(3, verbose_stream() << (is_initial?"assume ":"rup ") << m_clause << "\n");
|
|
auto* cl = s.mk_clause(m_clause, status::redundant());
|
|
m_trail.push_back({ id, m_clause, cl, true, is_initial });
|
|
s.propagate(false);
|
|
save(m_clause, cl);
|
|
}
|
|
|
|
/**
|
|
* Unit clauses (and binary clause) do not have multi-set semantics in the solver.
|
|
* So they should only be represented once.
|
|
*/
|
|
bool proof_trim::unit_or_binary_occurs() {
|
|
if (m_clause.size() == 1) {
|
|
literal lit = m_clause[0];
|
|
if (m_units.contains(lit.index()))
|
|
return true;
|
|
m_units.insert(lit.index());
|
|
}
|
|
// todo: binary?
|
|
return false;
|
|
}
|
|
|
|
void proof_trim::del() {
|
|
std::sort(m_clause.begin(), m_clause.end());
|
|
clause* cp = del(m_clause);
|
|
m_trail.push_back({ 0, m_clause, cp, false, true });
|
|
}
|
|
|
|
void proof_trim::infer(unsigned id) {
|
|
assume(id, false);
|
|
}
|
|
|
|
|
|
}
|