3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-04 02:10:23 +00:00
z3/src/tactic/bv/bit_blaster_model_converter.cpp
LeeYoungJoon 0a93ff515d
Centralize and document TRACE tags using X-macros (#7657)
* Introduce X-macro-based trace tag definition
- Created trace_tags.def to centralize TRACE tag definitions
- Each tag includes a symbolic name and description
- Set up enum class TraceTag for type-safe usage in TRACE macros

* Add script to generate Markdown documentation from trace_tags.def
- Python script parses trace_tags.def and outputs trace_tags.md

* Refactor TRACE_NEW to prepend TraceTag and pass enum to is_trace_enabled

* trace: improve trace tag handling system with hierarchical tagging

- Introduce hierarchical tag-class structure: enabling a tag class activates all child tags
- Unify TRACE, STRACE, SCTRACE, and CTRACE under enum TraceTag
- Implement initial version of trace_tag.def using X(tag, tag_class, description)
  (class names and descriptions to be refined in a future update)

* trace: replace all string-based TRACE tags with enum TraceTag
- Migrated all TRACE, STRACE, SCTRACE, and CTRACE macros to use enum TraceTag values instead of raw string literals

* trace : add cstring header

* trace : Add Markdown documentation generation from trace_tags.def via mk_api_doc.py

* trace : rename macro parameter 'class' to 'tag_class' and remove Unicode comment in trace_tags.h.

* trace : Add TODO comment for future implementation of tag_class activation

* trace : Disable code related to tag_class until implementation is ready (#7663).
2025-05-28 14:31:25 +01:00

277 lines
10 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
bit_blaster_model_convert.cpp
Abstract:
Model converter for bit-blasting tactics.
Author:
Leonardo (leonardo) 2011-05-09
Notes:
--*/
#include "model/model.h"
#include "model/model_pp.h"
#include "ast/converters/model_converter.h"
#include "ast/bv_decl_plugin.h"
#include "ast/ast_smt2_pp.h"
#include "ast/ast_pp.h"
#include "ast/ast_util.h"
/**
If TO_BOOL == true, then bit-vectors of size n were blasted into n-tuples of Booleans.
If TO_BOOL == false, then bit-vectors of size n were blasted into n-tuples of bit-vectors of size 1.
*/
template<bool TO_BOOL>
struct bit_blaster_model_converter : public model_converter {
func_decl_ref_vector m_vars;
expr_ref_vector m_bits;
func_decl_ref_vector m_newbits;
ast_manager & m() const { return m_vars.get_manager(); }
bit_blaster_model_converter(
ast_manager & m,
obj_map<func_decl, expr*> const & const2bits,
ptr_vector<func_decl> const& newbits):
m_vars(m), m_bits(m), m_newbits(m) {
for (auto const& [v, bits] : const2bits) {
SASSERT(!TO_BOOL || is_app_of(bits, m.get_family_id("bv"), OP_MKBV));
SASSERT(TO_BOOL || is_app_of(bits, m.get_family_id("bv"), OP_CONCAT));
m_vars.push_back(v);
m_bits.push_back(bits);
}
for (func_decl* f : newbits)
m_newbits.push_back(f);
}
void collect_bits(obj_hashtable<func_decl> & bits) {
unsigned sz = m_bits.size();
for (unsigned i = 0; i < sz; i++) {
expr * bs = m_bits.get(i);
SASSERT(!TO_BOOL || is_app_of(bs, m().get_family_id("bv"), OP_MKBV));
SASSERT(TO_BOOL || is_app_of(bs, m().get_family_id("bv"), OP_CONCAT));
unsigned num_args = to_app(bs)->get_num_args();
for (unsigned j = 0; j < num_args; j++) {
expr * bit = to_app(bs)->get_arg(j);
SASSERT(!TO_BOOL || m().is_bool(bit));
SASSERT(TO_BOOL || is_sort_of(bit->get_sort(), m().get_family_id("bv"), BV_SORT));
SASSERT(is_uninterp_const(bit));
bits.insert(to_app(bit)->get_decl());
}
}
TRACE(model_converter,
tout << "bits that should not be included in the model:\n";
for (func_decl* f : bits) {
tout << f->get_name() << " ";
}
tout << "\n";);
}
void copy_non_bits(obj_hashtable<func_decl> & bits, model * old_model, model * new_model) {
unsigned num = old_model->get_num_constants();
for (unsigned i = 0; i < num; i++) {
func_decl * f = old_model->get_constant(i);
if (bits.contains(f))
continue;
TRACE(model_converter, tout << "non-bit: " << f->get_name() << "\n";);
expr * fi = old_model->get_const_interp(f);
new_model->register_decl(f, fi);
}
TRACE(model_converter, tout << "after copy non bits:\n"; model_pp(tout, *new_model););
new_model->copy_func_interps(*old_model);
new_model->copy_usort_interps(*old_model);
TRACE(model_converter, tout << "after copying functions and sorts:\n"; model_pp(tout, *new_model););
}
void mk_bvs(model * old_model, model * new_model) {
bv_util util(m());
rational val;
rational two(2);
SASSERT(m_vars.size() == m_bits.size());
unsigned sz = m_vars.size();
for (unsigned i = 0; i < sz; i++) {
expr* new_val = old_model->get_const_interp(m_vars.get(i));
if (new_val) {
new_model->register_decl(m_vars.get(i), new_val);
continue;
}
expr * bs = m_bits.get(i);
val.reset();
unsigned bv_sz = to_app(bs)->get_num_args();
if (TO_BOOL) {
SASSERT(is_app_of(bs, m().get_family_id("bv"), OP_MKBV));
unsigned j = bv_sz;
while (j > 0) {
--j;
val *= two;
expr * bit = to_app(bs)->get_arg(j);
SASSERT(m().is_bool(bit));
SASSERT(is_uninterp_const(bit));
func_decl * bit_decl = to_app(bit)->get_decl();
expr * bit_val = old_model->get_const_interp(bit_decl);
if (bit_val && !m().is_true(bit_val) && !m().is_false(bit_val))
goto bail;
if (bit_val && m().is_true(bit_val))
val++;
}
}
else {
SASSERT(is_app_of(bs, m().get_family_id("bv"), OP_CONCAT));
for (unsigned j = 0; j < bv_sz; j++) {
val *= two;
expr * bit = to_app(bs)->get_arg(j);
SASSERT(util.is_bv(bit));
SASSERT(util.get_bv_size(bit) == 1);
SASSERT(is_uninterp_const(bit));
func_decl * bit_decl = to_app(bit)->get_decl();
expr * bit_val = old_model->get_const_interp(bit_decl);
// remark: if old_model does not assign bit_val, then assume it is false.
if (bit_val && !util.is_one(bit_val) && !util.is_zero(bit_val))
goto bail;
if (bit_val && util.is_one(bit_val))
val++;
}
}
new_val = util.mk_numeral(val, bv_sz);
new_model->register_decl(m_vars.get(i), new_val);
continue;
bail:
expr_ref_vector vals(m());
for (expr* bit : *to_app(bs)) {
func_decl * bit_decl = to_app(bit)->get_decl();
expr * bit_val = old_model->get_const_interp(bit_decl);
if (!bit_val)
bit_val = m().mk_false();
vals.push_back(bit_val);
}
if (TO_BOOL)
new_val = util.mk_bv(vals.size(), vals.data());
else
new_val = util.mk_concat(vals);
new_model->register_decl(m_vars.get(i), new_val);
}
}
app_ref mk_bv(expr* bs, model& old_model) {
bv_util util(m());
unsigned bv_sz = to_app(bs)->get_num_args();
expr_ref_vector args(m());
app_ref result(m());
for (expr * bit : *to_app(bs)) {
SASSERT(is_uninterp_const(bit));
func_decl * bit_decl = to_app(bit)->get_decl();
expr * bit_val = old_model.get_const_interp(bit_decl);
args.push_back(bit_val ? bit_val : bit);
}
if (TO_BOOL) {
SASSERT(is_app_of(bs, m().get_family_id("bv"), OP_MKBV));
result = util.mk_bv(bv_sz, args.data());
}
else {
SASSERT(is_app_of(bs, m().get_family_id("bv"), OP_CONCAT));
result = util.mk_concat(bv_sz, args.data());
}
return result;
}
void operator()(model_ref & md) override {
model * new_model = alloc(model, m());
obj_hashtable<func_decl> bits;
collect_bits(bits);
copy_non_bits(bits, md.get(), new_model);
mk_bvs(md.get(), new_model);
md = new_model;
}
/**
\brief simplisic expansion operator for formulas.
It just adds back bit-vector definitions to the formula whether they are used or not.
*/
void operator()(expr_ref& fml) override {
unsigned sz = m_vars.size();
if (sz == 0) return;
expr_ref_vector fmls(m());
fmls.push_back(fml);
for (unsigned i = 0; i < sz; i++) {
fmls.push_back(m().mk_eq(m().mk_const(m_vars.get(i)), m_bits.get(i)));
}
m_vars.reset();
m_bits.reset();
fml = mk_and(fmls);
}
void display(std::ostream & out) override {
for (func_decl * f : m_newbits)
display_del(out, f);
unsigned sz = m_vars.size();
for (unsigned i = 0; i < sz; i++)
display_add(out, m(), m_vars.get(i), m_bits.get(i));
}
void get_units(obj_map<expr, bool>& units) override {
// no-op
}
void convert_initialize_value(vector<std::pair<expr_ref, expr_ref>>& var2value) override {
if (m_vars.empty() || var2value.empty())
return;
rational r;
bv_util util(m());
for (unsigned j = 0; j < var2value.size(); ++j) {
auto& [var, value] = var2value[j];
if (!is_uninterp_const(var))
continue;
if (!util.is_numeral(value, r))
continue;
unsigned sz = m_vars.size();
for (unsigned i = 0; i < sz; i++) {
if (m_vars.get(i) != to_app(var)->get_decl())
continue;
unsigned k = 0;
expr_ref bit_k(m());
for (auto arg : *to_app(m_bits.get(i))) {
bit_k = m().mk_bool_val(r.get_bit(k));
var2value.push_back({ expr_ref(arg, m()), bit_k });
++k;
}
var2value[i] = var2value.back();
var2value.pop_back();
}
}
}
protected:
bit_blaster_model_converter(ast_manager & m):m_vars(m), m_bits(m), m_newbits(m) { }
public:
model_converter * translate(ast_translation & translator) override {
bit_blaster_model_converter * res = alloc(bit_blaster_model_converter, translator.to());
for (func_decl * v : m_vars)
res->m_vars.push_back(translator(v));
for (expr* b : m_bits)
res->m_bits.push_back(translator(b));
for (func_decl* f : m_newbits)
res->m_newbits.push_back(translator(f));
return res;
}
};
model_converter * mk_bit_blaster_model_converter(ast_manager & m, obj_map<func_decl, expr*> const & const2bits, ptr_vector<func_decl> const& newbits) {
return const2bits.empty() ? nullptr : alloc(bit_blaster_model_converter<true>, m, const2bits, newbits);
}
model_converter * mk_bv1_blaster_model_converter(ast_manager & m, obj_map<func_decl, expr*> const & const2bits, ptr_vector<func_decl> const& newbits) {
return const2bits.empty() ? nullptr : alloc(bit_blaster_model_converter<false>, m, const2bits, newbits);
}