mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 11:25:51 +00:00
377 lines
15 KiB
C++
377 lines
15 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
<name>
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Lev Nachmanson (levnach)
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
#include "math/lp/lp_dual_simplex.h"
|
|
namespace lp{
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_after_stage1() {
|
|
switch (m_core_solver->get_status()) {
|
|
case lp_status::OPTIMAL:
|
|
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
|
|
this->m_status = lp_status::FEASIBLE;
|
|
} else {
|
|
this->m_status = lp_status::UNBOUNDED;
|
|
}
|
|
break;
|
|
case lp_status::DUAL_UNBOUNDED:
|
|
lp_unreachable();
|
|
case lp_status::ITERATIONS_EXHAUSTED:
|
|
this->m_status = lp_status::ITERATIONS_EXHAUSTED;
|
|
break;
|
|
case lp_status::TIME_EXHAUSTED:
|
|
this->m_status = lp_status::TIME_EXHAUSTED;
|
|
break;
|
|
case lp_status::FLOATING_POINT_ERROR:
|
|
this->m_status = lp_status::FLOATING_POINT_ERROR;
|
|
break;
|
|
default:
|
|
lp_unreachable();
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_stage2(unsigned j) {
|
|
lp_assert(j >= this->number_of_core_structurals());
|
|
switch (m_column_types_of_logicals[j - this->number_of_core_structurals()]) {
|
|
case column_type::lower_bound:
|
|
m_lower_bounds[j] = numeric_traits<T>::zero();
|
|
m_column_types_of_core_solver[j] = column_type::lower_bound;
|
|
m_can_enter_basis[j] = true;
|
|
break;
|
|
case column_type::fixed:
|
|
this->m_upper_bounds[j] = m_lower_bounds[j] = numeric_traits<T>::zero();
|
|
m_column_types_of_core_solver[j] = column_type::fixed;
|
|
m_can_enter_basis[j] = false;
|
|
break;
|
|
default:
|
|
lp_unreachable();
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for_stage2(unsigned j) {
|
|
column_info<T> * ci = this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]];
|
|
switch (ci->get_column_type()) {
|
|
case column_type::lower_bound:
|
|
m_lower_bounds[j] = numeric_traits<T>::zero();
|
|
m_column_types_of_core_solver[j] = column_type::lower_bound;
|
|
m_can_enter_basis[j] = true;
|
|
break;
|
|
case column_type::fixed:
|
|
case column_type::upper_bound:
|
|
lp_unreachable();
|
|
case column_type::boxed:
|
|
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
|
|
m_lower_bounds[j] = numeric_traits<T>::zero();
|
|
m_column_types_of_core_solver[j] = column_type::boxed;
|
|
m_can_enter_basis[j] = true;
|
|
break;
|
|
case column_type::free_column:
|
|
m_can_enter_basis[j] = true;
|
|
m_column_types_of_core_solver[j] = column_type::free_column;
|
|
break;
|
|
default:
|
|
lp_unreachable();
|
|
}
|
|
// T cost_was = this->m_costs[j];
|
|
this->set_scaled_cost(j);
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::unmark_boxed_and_fixed_columns_and_fix_structural_costs() {
|
|
unsigned j = this->m_A->column_count();
|
|
while (j-- > this->number_of_core_structurals()) {
|
|
fix_logical_for_stage2(j);
|
|
}
|
|
j = this->number_of_core_structurals();
|
|
while (j--) {
|
|
fix_structural_for_stage2(j);
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::restore_right_sides() {
|
|
unsigned i = this->m_A->row_count();
|
|
while (i--) {
|
|
this->m_b[i] = m_b_copy[i];
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::solve_for_stage2() {
|
|
m_core_solver->restore_non_basis();
|
|
m_core_solver->solve_yB(m_core_solver->m_y);
|
|
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
|
|
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
|
|
m_core_solver->set_status(lp_status::FEASIBLE);
|
|
m_core_solver->solve();
|
|
switch (m_core_solver->get_status()) {
|
|
case lp_status::OPTIMAL:
|
|
this->m_status = lp_status::OPTIMAL;
|
|
break;
|
|
case lp_status::DUAL_UNBOUNDED:
|
|
this->m_status = lp_status::INFEASIBLE;
|
|
break;
|
|
case lp_status::TIME_EXHAUSTED:
|
|
this->m_status = lp_status::TIME_EXHAUSTED;
|
|
break;
|
|
case lp_status::FLOATING_POINT_ERROR:
|
|
this->m_status = lp_status::FLOATING_POINT_ERROR;
|
|
break;
|
|
default:
|
|
lp_unreachable();
|
|
}
|
|
this->m_second_stage_iterations = m_core_solver->total_iterations();
|
|
this->m_total_iterations = (this->m_first_stage_iterations + this->m_second_stage_iterations);
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_x_with_zeros() {
|
|
unsigned j = this->m_A->column_count();
|
|
while (j--) {
|
|
this->m_x[j] = numeric_traits<T>::zero();
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
|
|
lp_assert(m_core_solver == nullptr);
|
|
this->m_x.resize(this->m_A->column_count(), numeric_traits<T>::zero());
|
|
if (this->m_settings.get_message_ostream() != nullptr)
|
|
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
|
|
m_core_solver = new lp_dual_core_solver<T, X>(
|
|
*this->m_A,
|
|
m_can_enter_basis,
|
|
this->m_b, // the right side vector
|
|
this->m_x,
|
|
this->m_basis,
|
|
this->m_nbasis,
|
|
this->m_heading,
|
|
this->m_costs,
|
|
this->m_column_types_of_core_solver,
|
|
this->m_lower_bounds,
|
|
this->m_upper_bounds,
|
|
this->m_settings,
|
|
*this);
|
|
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
|
|
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
|
|
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
|
|
// skipping stage 1
|
|
m_core_solver->set_status(lp_status::OPTIMAL);
|
|
m_core_solver->set_total_iterations(0);
|
|
} else {
|
|
m_core_solver->solve();
|
|
}
|
|
decide_on_status_after_stage1();
|
|
this->m_first_stage_iterations = m_core_solver->total_iterations();
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::stage2() {
|
|
unmark_boxed_and_fixed_columns_and_fix_structural_costs();
|
|
restore_right_sides();
|
|
solve_for_stage2();
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields() {
|
|
unsigned slack_var = this->number_of_core_structurals();
|
|
unsigned artificial = this->number_of_core_structurals() + this->m_slacks;
|
|
|
|
for (unsigned row = 0; row < this->row_count(); row++) {
|
|
fill_first_stage_solver_fields_for_row_slack_and_artificial(row, slack_var, artificial);
|
|
}
|
|
fill_costs_and_bounds_and_column_types_for_the_first_stage_solver();
|
|
}
|
|
|
|
template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_type(unsigned j) {
|
|
lp_assert(j < this->m_A->column_count());
|
|
if (j >= this->number_of_core_structurals()) {
|
|
return m_column_types_of_logicals[j - this->number_of_core_structurals()];
|
|
}
|
|
return this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]]->get_column_type();
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j) {
|
|
// see 4.7 in the dissertation of Achim Koberstein
|
|
lp_assert(this->m_core_solver_columns_to_external_columns.find(j) !=
|
|
this->m_core_solver_columns_to_external_columns.end());
|
|
|
|
T free_bound = T(1e4); // see 4.8
|
|
unsigned jj = this->m_core_solver_columns_to_external_columns[j];
|
|
lp_assert(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
|
|
column_info<T> * ci = this->m_map_from_var_index_to_column_info[jj];
|
|
switch (ci->get_column_type()) {
|
|
case column_type::upper_bound: {
|
|
std::stringstream s;
|
|
s << "unexpected bound type " << j << " "
|
|
<< column_type_to_string(get_column_type(j));
|
|
throw_exception(s.str());
|
|
break;
|
|
}
|
|
case column_type::lower_bound: {
|
|
m_can_enter_basis[j] = true;
|
|
this->set_scaled_cost(j);
|
|
this->m_lower_bounds[j] = numeric_traits<T>::zero();
|
|
this->m_upper_bounds[j] =numeric_traits<T>::one();
|
|
break;
|
|
}
|
|
case column_type::free_column: {
|
|
m_can_enter_basis[j] = true;
|
|
this->set_scaled_cost(j);
|
|
this->m_upper_bounds[j] = free_bound;
|
|
this->m_lower_bounds[j] = -free_bound;
|
|
break;
|
|
}
|
|
case column_type::boxed:
|
|
m_can_enter_basis[j] = false;
|
|
this->m_costs[j] = numeric_traits<T>::zero();
|
|
this->m_upper_bounds[j] = this->m_lower_bounds[j] = numeric_traits<T>::zero(); // is it needed?
|
|
break;
|
|
default:
|
|
lp_unreachable();
|
|
}
|
|
m_column_types_of_core_solver[j] = column_type::boxed;
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j) {
|
|
this->m_costs[j] = 0;
|
|
lp_assert(get_column_type(j) != column_type::upper_bound);
|
|
if ((m_can_enter_basis[j] = (get_column_type(j) == column_type::lower_bound))) {
|
|
m_column_types_of_core_solver[j] = column_type::boxed;
|
|
this->m_lower_bounds[j] = numeric_traits<T>::zero();
|
|
this->m_upper_bounds[j] = numeric_traits<T>::one();
|
|
} else {
|
|
m_column_types_of_core_solver[j] = column_type::fixed;
|
|
this->m_lower_bounds[j] = numeric_traits<T>::zero();
|
|
this->m_upper_bounds[j] = numeric_traits<T>::zero();
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_and_bounds_and_column_types_for_the_first_stage_solver() {
|
|
unsigned j = this->m_A->column_count();
|
|
while (j-- > this->number_of_core_structurals()) { // go over logicals here
|
|
fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(j);
|
|
}
|
|
j = this->number_of_core_structurals();
|
|
while (j--) {
|
|
fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(j);
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
|
|
unsigned & slack_var,
|
|
unsigned & artificial) {
|
|
lp_assert(row < this->row_count());
|
|
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
|
|
// we need to bring the program to the form Ax = b
|
|
T rs = this->m_b[row];
|
|
switch (constraint.m_relation) {
|
|
case Equal: // no slack variable here
|
|
set_type_for_logical(artificial, column_type::fixed);
|
|
this->m_basis[row] = artificial;
|
|
this->m_costs[artificial] = numeric_traits<T>::zero();
|
|
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
|
artificial++;
|
|
break;
|
|
|
|
case Greater_or_equal:
|
|
set_type_for_logical(slack_var, column_type::lower_bound);
|
|
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
|
|
if (rs > 0) {
|
|
// adding one artificial
|
|
set_type_for_logical(artificial, column_type::fixed);
|
|
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
|
this->m_basis[row] = artificial;
|
|
this->m_costs[artificial] = numeric_traits<T>::zero();
|
|
artificial++;
|
|
} else {
|
|
// we can put a slack_var into the basis, and avoid adding an artificial variable
|
|
this->m_basis[row] = slack_var;
|
|
this->m_costs[slack_var] = numeric_traits<T>::zero();
|
|
}
|
|
slack_var++;
|
|
break;
|
|
case Less_or_equal:
|
|
// introduce a non-negative slack variable
|
|
set_type_for_logical(slack_var, column_type::lower_bound);
|
|
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
|
|
if (rs < 0) {
|
|
// adding one artificial
|
|
set_type_for_logical(artificial, column_type::fixed);
|
|
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
|
this->m_basis[row] = artificial;
|
|
this->m_costs[artificial] = numeric_traits<T>::zero();
|
|
artificial++;
|
|
} else {
|
|
// we can put slack_var into the basis, and avoid adding an artificial variable
|
|
this->m_basis[row] = slack_var;
|
|
this->m_costs[slack_var] = numeric_traits<T>::zero();
|
|
}
|
|
slack_var++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::augment_matrix_A_and_fill_x_and_allocate_some_fields() {
|
|
this->count_slacks_and_artificials();
|
|
this->m_A->add_columns_at_the_end(this->m_slacks + this->m_artificials);
|
|
unsigned n = this->m_A->column_count();
|
|
this->m_column_types_of_core_solver.resize(n);
|
|
m_column_types_of_logicals.resize(this->m_slacks + this->m_artificials);
|
|
this->m_costs.resize(n);
|
|
this->m_upper_bounds.resize(n);
|
|
this->m_lower_bounds.resize(n);
|
|
m_can_enter_basis.resize(n);
|
|
this->m_basis.resize(this->m_A->row_count());
|
|
}
|
|
|
|
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::copy_m_b_aside_and_set_it_to_zeros() {
|
|
for (unsigned i = 0; i < this->m_b.size(); i++) {
|
|
m_b_copy.push_back(this->m_b[i]);
|
|
this->m_b[i] = numeric_traits<T>::zero(); // preparing for the first stage
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X> void lp_dual_simplex<T, X>::find_maximal_solution(){
|
|
if (this->problem_is_empty()) {
|
|
this->m_status = lp_status::EMPTY;
|
|
return;
|
|
}
|
|
|
|
this->flip_costs(); // do it for now, todo ( remove the flipping)
|
|
|
|
this->cleanup();
|
|
if (this->m_status == lp_status::INFEASIBLE) {
|
|
return;
|
|
}
|
|
this->fill_matrix_A_and_init_right_side();
|
|
this->fill_m_b();
|
|
this->scale();
|
|
augment_matrix_A_and_fill_x_and_allocate_some_fields();
|
|
fill_first_stage_solver_fields();
|
|
copy_m_b_aside_and_set_it_to_zeros();
|
|
stage1();
|
|
if (this->m_status == lp_status::FEASIBLE) {
|
|
stage2();
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T, typename X> T lp_dual_simplex<T, X>::get_current_cost() const {
|
|
T ret = numeric_traits<T>::zero();
|
|
for (auto it : this->m_map_from_var_index_to_column_info) {
|
|
ret += this->get_column_cost_value(it.first, it.second);
|
|
}
|
|
return -ret; // we flip costs for now
|
|
}
|
|
}
|