mirror of
https://github.com/Z3Prover/z3
synced 2025-06-21 05:13:39 +00:00
This commit overhauls the proof format (in development) for the new core. NOTE: this functionality is work in progress with a long way to go. It is shielded by the sat.euf option, which is off by default and in pre-release state. It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf. It retires the ad-hoc extension of DRUP used by the SAT solver. Instead it relies on SMT with ad-hoc extensions for proof terms. It adds the following commands (consumed by proof_cmds.cpp): - assume - for input clauses - learn - when a clause is learned (or redundant clause is added) - del - when a clause is deleted. The commands take a list of expressions of type Bool and the last argument can optionally be of type Proof. When the last argument is of type Proof it is provided as a hint to justify the learned clause. Proof hints can be checked using a self-contained proof checker. The sat/smt/euf_proof_checker.h class provides a plugin dispatcher for checkers. It is instantiated with a checker for arithmetic lemmas, so far for Farkas proofs. Use example: ``` (set-option :sat.euf true) (set-option :tactic.default_tactic smt) (set-option :sat.smt.proof f.proof) (declare-const x Int) (declare-const y Int) (declare-const z Int) (declare-const u Int) (assert (< x y)) (assert (< y z)) (assert (< z x)) (check-sat) ``` Run z3 on a file with above content. Then run z3 on f.proof ``` (verified-smt) (verified-smt) (verified-smt) (verified-farkas) (verified-smt) ```
206 lines
6.6 KiB
C++
206 lines
6.6 KiB
C++
/*++
|
|
Copyright (c) 2020 Microsoft Corporation
|
|
|
|
--*/
|
|
|
|
#include<iostream>
|
|
#include<fstream>
|
|
#include "ast/bv_decl_plugin.h"
|
|
#include "util/memory_manager.h"
|
|
#include "util/statistics.h"
|
|
#include "sat/dimacs.h"
|
|
#include "sat/sat_solver.h"
|
|
#include "sat/sat_drat.h"
|
|
#include "smt/smt_solver.h"
|
|
#include "shell/drat_frontend.h"
|
|
#include "parsers/smt2/smt2parser.h"
|
|
#include "cmd_context/cmd_context.h"
|
|
#include "ast/proofs/proof_checker.h"
|
|
#include "ast/rewriter/th_rewriter.h"
|
|
#include "ast/reg_decl_plugins.h"
|
|
#include "sat/smt/arith_proof_checker.h"
|
|
|
|
|
|
class drup_checker {
|
|
sat::drat& m_drat;
|
|
sat::literal_vector m_units;
|
|
bool m_check_inputs = false;
|
|
|
|
void add_units() {
|
|
auto const& units = m_drat.units();
|
|
for (unsigned i = m_units.size(); i < units.size(); ++i)
|
|
m_units.push_back(units[i].first);
|
|
}
|
|
|
|
void check_assertion_redundant(sat::literal_vector const& input) {
|
|
}
|
|
|
|
|
|
/**
|
|
* Validate a lemma using the following attempts:
|
|
* 1. check if it is propositional DRUP
|
|
* 2. establish the negation of literals is unsat using a limited unfolding.
|
|
* 3. check that it is DRUP modulo theories by taking propositional implicants from DRUP validation
|
|
*/
|
|
sat::literal_vector drup_units;
|
|
|
|
void check_clause(sat::literal_vector const& lits) {
|
|
}
|
|
|
|
void check_drup(sat::literal_vector const& lits) {
|
|
add_units();
|
|
drup_units.reset();
|
|
if (m_drat.is_drup(lits.size(), lits.data(), drup_units)) {
|
|
std::cout << "drup\n";
|
|
return;
|
|
}
|
|
std::cout << "did not verify " << lits << "\n";
|
|
exit(0);
|
|
}
|
|
|
|
public:
|
|
drup_checker(sat::drat& drat): m_drat(drat) {}
|
|
|
|
void add(sat::literal_vector const& lits, sat::status const& st) {
|
|
for (sat::literal lit : lits)
|
|
while (lit.var() >= m_drat.get_solver().num_vars())
|
|
m_drat.get_solver().mk_var(true);
|
|
if (st.is_sat())
|
|
check_drup(lits);
|
|
m_drat.add(lits, st);
|
|
}
|
|
};
|
|
|
|
unsigned read_drat(char const* drat_file) {
|
|
ast_manager m;
|
|
reg_decl_plugins(m);
|
|
std::ifstream ins(drat_file);
|
|
dimacs::drat_parser drat(ins, std::cerr);
|
|
|
|
std::function<int(char const* r)> read_theory = [&](char const* r) {
|
|
return m.mk_family_id(symbol(r));
|
|
};
|
|
std::function<symbol(int)> write_theory = [&](int th) {
|
|
return m.get_family_name(th);
|
|
};
|
|
drat.set_read_theory(read_theory);
|
|
params_ref p;
|
|
reslimit lim;
|
|
sat::solver solver(p, lim);
|
|
sat::drat drat_checker(solver);
|
|
drup_checker checker(drat_checker);
|
|
|
|
for (auto const& r : drat) {
|
|
std::cout << dimacs::drat_pp(r, write_theory);
|
|
std::cout.flush();
|
|
checker.add(r.m_lits, r.m_status);
|
|
if (drat_checker.inconsistent()) {
|
|
std::cout << "inconsistent\n";
|
|
return 0;
|
|
}
|
|
statistics st;
|
|
drat_checker.collect_statistics(st);
|
|
std::cout << st << "\n";
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if 0
|
|
|
|
bool validate_hint(expr_ref_vector const& exprs, sat::literal_vector const& lits, sat::proof_hint const& hint) {
|
|
arith_util autil(m);
|
|
arith::proof_checker achecker(m);
|
|
proof_checker pc(m);
|
|
switch (hint.m_ty) {
|
|
case sat::hint_type::null_h:
|
|
break;
|
|
case sat::hint_type::bound_h:
|
|
case sat::hint_type::farkas_h:
|
|
case sat::hint_type::implied_eq_h: {
|
|
achecker.reset();
|
|
for (auto const& [a, b]: hint.m_eqs) {
|
|
expr* x = exprs[a];
|
|
expr* y = exprs[b];
|
|
achecker.add_eq(x, y);
|
|
}
|
|
for (auto const& [a, b]: hint.m_diseqs) {
|
|
expr* x = exprs[a];
|
|
expr* y = exprs[b];
|
|
achecker.add_diseq(x, y);
|
|
}
|
|
|
|
unsigned sz = hint.m_literals.size();
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
auto const& [coeff, lit] = hint.m_literals[i];
|
|
app_ref e(to_app(m_b2e[lit.var()]), m);
|
|
if (i + 1 == sz && sat::hint_type::bound_h == hint.m_ty) {
|
|
if (!achecker.add_conseq(coeff, e, lit.sign())) {
|
|
std::cout << "p failed checking hint " << e << "\n";
|
|
return false;
|
|
}
|
|
|
|
}
|
|
else if (!achecker.add_ineq(coeff, e, lit.sign())) {
|
|
std::cout << "p failed checking hint " << e << "\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// achecker.display(std::cout << "checking\n");
|
|
bool ok = achecker.check();
|
|
|
|
if (!ok) {
|
|
rational lc(1);
|
|
for (auto const& [coeff, lit] : hint.m_literals)
|
|
lc = lcm(lc, denominator(coeff));
|
|
bool is_strict = false;
|
|
expr_ref sum(m);
|
|
for (auto const& [coeff, lit] : hint.m_literals) {
|
|
app_ref e(to_app(m_b2e[lit.var()]), m);
|
|
VERIFY(pc.check_arith_literal(!lit.sign(), e, coeff*lc, sum, is_strict));
|
|
std::cout << "sum: " << sum << "\n";
|
|
}
|
|
sort* s = sum->get_sort();
|
|
if (is_strict)
|
|
sum = autil.mk_lt(sum, autil.mk_numeral(rational(0), s));
|
|
else
|
|
sum = autil.mk_le(sum, autil.mk_numeral(rational(0), s));
|
|
th_rewriter rw(m);
|
|
rw(sum);
|
|
std::cout << "sum: " << sum << "\n";
|
|
|
|
for (auto const& [a, b]: hint.m_eqs) {
|
|
expr* x = exprs[a];
|
|
expr* y = exprs[b];
|
|
app_ref e(m.mk_eq(x, y), m);
|
|
std::cout << e << "\n";
|
|
}
|
|
for (auto const& [a, b]: hint.m_diseqs) {
|
|
expr* x = exprs[a];
|
|
expr* y = exprs[b];
|
|
app_ref e(m.mk_not(m.mk_eq(x, y)), m);
|
|
std::cout << e << "\n";
|
|
}
|
|
for (auto const& [coeff, lit] : hint.m_literals) {
|
|
app_ref e(to_app(m_b2e[lit.var()]), m);
|
|
if (lit.sign()) e = m.mk_not(e);
|
|
std::cout << e << "\n";
|
|
}
|
|
achecker.display(std::cout);
|
|
std::cout << "p hint not verified\n";
|
|
return false;
|
|
}
|
|
|
|
std::cout << "p hint verified\n";
|
|
return true;
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif
|