mirror of
https://github.com/Z3Prover/z3
synced 2025-06-29 01:18:45 +00:00
437 lines
13 KiB
C++
437 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2022 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
elim_unconstrained.cpp
|
|
|
|
Abstract:
|
|
|
|
Incremental, modular and more efficient version of elim_unconstr_tactic and
|
|
reduce_invertible_tactic.
|
|
|
|
reduce_invertible_tactic should be subsumed by elim_unconstr_tactic
|
|
elim_unconstr_tactic has some built-in limitations that are not easy to fix with small changes:
|
|
- it is inefficient for examples like x <= y, y <= z, z <= u, ...
|
|
All variables x, y, z, .. can eventually be eliminated, but the tactic requires a global
|
|
analysis between each elimination. We address this by using reference counts and maintaining
|
|
a heap of reference counts.
|
|
- it does not accomodate side constraints. The more general invertibility reduction methods, such
|
|
as those introduced for bit-vectors use side constraints.
|
|
- it is not modular: we detach the expression invertion routines to self-contained code.
|
|
|
|
Maintain a representation of terms as a set of nodes.
|
|
Each node has:
|
|
|
|
- reference count = number of parents that are live
|
|
- orig - original term, the orig->get_id() is the index to the node
|
|
- term - current term representing the node after rewriting
|
|
- parents - list of parents where orig occurs.
|
|
|
|
Subterms have reference counts
|
|
Elegible variables are inserted into a heap ordered by reference counts.
|
|
Variables that have reference count 1 are examined for invertibility.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2022-11-11.
|
|
|
|
Notes:
|
|
|
|
proof production is work in progress.
|
|
reconstruct_term should assign proof objects with nodes by applying
|
|
monotonicity or reflexivity rules.
|
|
|
|
Maintain term nodes.
|
|
Each term node has a root. The root of the root is itself.
|
|
The root of a term node can be updated.
|
|
The parents of terms with same roots are combined.
|
|
The depth of a parent is always greater than the depth of a child.
|
|
The effective term of a node is reconstructed by taking the root and canonizing the children based on roots.
|
|
The reference count of a term is the number of parents it has.
|
|
|
|
node: term -> node
|
|
dirty: node -> bool
|
|
root: node -> node
|
|
top: node -> bool
|
|
term: node -> term
|
|
|
|
invariant:
|
|
- root(root(n)) = root(n)
|
|
- term(node(t)) = t
|
|
|
|
parents: node -> node*
|
|
parents(root(node)) = union of parents of n : root(n) = root(node).
|
|
is_child(n, p) = term(root(n)) in args(term(root(p)))
|
|
|
|
set_root: node -> node -> void
|
|
set_root(n, r) =
|
|
r = root(r)
|
|
n = root(n)
|
|
if r = n then return
|
|
parents(r) = parents(r) union parents(n)
|
|
root(n) := r,
|
|
top(r) := top(r) or top(n)
|
|
set all parents of class(r) to dirty, recursively
|
|
|
|
reconstruct_term: node -> term
|
|
reconstruct_term(n) =
|
|
r = root(n)
|
|
if dirty(r) then
|
|
args = [reconstruct_term(c) | c in args(term(r))]
|
|
term(r) := term(r).f(args)
|
|
dirty(r) := false
|
|
return term(r)
|
|
|
|
live : term -> bool
|
|
live(t) =
|
|
n = node(t)
|
|
is_root(n) & (top(n) or p in parents(n) : live(p))
|
|
|
|
Only live nodes require updates.
|
|
|
|
eliminate:
|
|
while heap is not empty:
|
|
v = heap.erase_min()
|
|
n = node(v)
|
|
if n.parents.size() > 1 then
|
|
return
|
|
if !is_root(n) or !live(n) or n.parents.size() != 1 then
|
|
continue
|
|
p = n.parents[0]
|
|
if !is_child(n, p) or !is_root(p) then
|
|
continue
|
|
t = p.term
|
|
args = [reconstruct_term(node(arg)) | arg in t]
|
|
r = inverter(t.f, args)
|
|
if r then
|
|
set_root(n, r)
|
|
|
|
|
|
|
|
--*/
|
|
|
|
|
|
|
|
#include "ast/ast_ll_pp.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/recfun_decl_plugin.h"
|
|
#include "ast/simplifiers/elim_unconstrained.h"
|
|
|
|
elim_unconstrained::elim_unconstrained(ast_manager& m, dependent_expr_state& fmls) :
|
|
dependent_expr_simplifier(m, fmls), m_inverter(m), m_lt(*this), m_heap(1024, m_lt), m_trail(m), m_args(m) {
|
|
std::function<bool(expr*)> is_var = [&](expr* e) {
|
|
return is_uninterp_const(e) && !m_fmls.frozen(e) && get_node(e).is_root() && get_node(e).num_parents() <= 1;
|
|
};
|
|
m_inverter.set_is_var(is_var);
|
|
}
|
|
|
|
elim_unconstrained::~elim_unconstrained() {
|
|
reset_nodes();
|
|
}
|
|
|
|
bool elim_unconstrained::is_var_lt(int v1, int v2) const {
|
|
auto p1 = get_node(v1).num_parents();
|
|
auto p2 = get_node(v2).num_parents();
|
|
return p1 < p2;
|
|
}
|
|
|
|
void elim_unconstrained::eliminate() {
|
|
while (!m_heap.empty()) {
|
|
expr_ref r(m);
|
|
int v = m_heap.erase_min();
|
|
node& n = get_node(v);
|
|
if (!n.is_root() || n.is_top())
|
|
continue;
|
|
unsigned num_parents = n.num_parents();
|
|
if (num_parents == 0)
|
|
continue;
|
|
if (num_parents > 1)
|
|
return;
|
|
|
|
node& p = n.parent();
|
|
if (!is_child(n, p) || !p.is_root())
|
|
continue;
|
|
expr* e = p.term();
|
|
if (!e || !is_app(e) || !is_ground(e))
|
|
continue;
|
|
|
|
SASSERT(!m_heap.contains(p.term()->get_id()));
|
|
|
|
app* t = to_app(e);
|
|
TRACE("elim_unconstrained", tout << "eliminating " << mk_bounded_pp(t, m) << "\n";);
|
|
unsigned sz = m_args.size();
|
|
for (expr* arg : *to_app(t))
|
|
m_args.push_back(reconstruct_term(root(arg)));
|
|
expr_ref rr(m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz), m);
|
|
bool inverted = m_inverter(t->get_decl(), t->get_num_args(), m_args.data() + sz, r);
|
|
proof_ref pr(m);
|
|
if (inverted && m_enable_proofs) {
|
|
expr * s = m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz);
|
|
expr * eq = m.mk_eq(s, r);
|
|
proof * pr1 = m.mk_def_intro(eq);
|
|
proof * pr = m.mk_apply_def(s, r, pr1);
|
|
m_trail.push_back(pr);
|
|
}
|
|
m_args.shrink(sz);
|
|
if (!inverted)
|
|
continue;
|
|
|
|
IF_VERBOSE(4, verbose_stream() << "replace " << mk_bounded_pp(t, m) << " / " << mk_bounded_pp(rr, m) << " -> " << mk_bounded_pp(r, m) << "\n");
|
|
|
|
|
|
TRACE("elim_unconstrained", tout << mk_bounded_pp(t, m) << " / " << mk_bounded_pp(rr, m) << " -> " << mk_bounded_pp(r, m) << "\n");
|
|
SASSERT(r->get_sort() == t->get_sort());
|
|
m_stats.m_num_eliminated++;
|
|
node& rn = root(r);
|
|
set_root(p, rn);
|
|
expr* rt = rn.term();
|
|
SASSERT(!m_heap.contains(rt->get_id()));
|
|
m_heap.reserve(rt->get_id() + 1);
|
|
if (is_uninterp_const(rt))
|
|
m_heap.insert(rt->get_id());
|
|
else
|
|
m_created_compound = true;
|
|
}
|
|
}
|
|
|
|
void elim_unconstrained::set_root(node& n, node& r) {
|
|
SASSERT(n.is_root());
|
|
SASSERT(r.is_root());
|
|
if (&n == &r)
|
|
return;
|
|
r.add_parents(n.parents());
|
|
n.set_root(r);
|
|
for (auto p : n.parents())
|
|
invalidate_parents(*p);
|
|
}
|
|
|
|
void elim_unconstrained::invalidate_parents(node& n) {
|
|
ptr_buffer<node> todo;
|
|
node* np = &n;
|
|
do {
|
|
node& n = *np;
|
|
if (!n.is_dirty()) {
|
|
n.set_dirty();
|
|
for (auto* p : n.parents())
|
|
todo.push_back(p);
|
|
}
|
|
np = nullptr;
|
|
if (!todo.empty()) {
|
|
np = todo.back();
|
|
todo.pop_back();
|
|
}
|
|
}
|
|
while (np);
|
|
}
|
|
|
|
bool elim_unconstrained::is_child(node const& ch, node const& p) {
|
|
SASSERT(ch.is_root());
|
|
return is_app(p.term()) && any_of(*to_app(p.term()), [&](expr* arg) { return &root(arg) == &ch; });
|
|
}
|
|
|
|
elim_unconstrained::node& elim_unconstrained::get_node(expr* t) {
|
|
unsigned id = t->get_id();
|
|
if (m_nodes.size() <= id)
|
|
m_nodes.resize(id + 1, nullptr);
|
|
node* n = m_nodes[id];
|
|
if (!n) {
|
|
n = alloc(node, m, t);
|
|
m_nodes[id] = n;
|
|
if (is_app(t)) {
|
|
for (auto arg : *to_app(t)) {
|
|
node& ch = get_node(arg);
|
|
SASSERT(ch.is_root());
|
|
ch.add_parent(*n);
|
|
if (is_uninterp_const(arg))
|
|
m_heap.increased(arg->get_id());
|
|
}
|
|
}
|
|
else if (is_quantifier(t)) {
|
|
node& ch = get_node(to_quantifier(t)->get_expr());
|
|
SASSERT(ch.is_root());
|
|
ch.add_parent(*n);
|
|
}
|
|
}
|
|
return *n;
|
|
}
|
|
|
|
void elim_unconstrained::reset_nodes() {
|
|
for (node* n : m_nodes)
|
|
dealloc(n);
|
|
m_nodes.reset();
|
|
}
|
|
|
|
/**
|
|
* initialize node structure
|
|
*/
|
|
void elim_unconstrained::init_nodes() {
|
|
|
|
m_enable_proofs = false;
|
|
m_trail.reset();
|
|
m_fmls.freeze_suffix();
|
|
|
|
expr_ref_vector terms(m);
|
|
for (unsigned i : indices()) {
|
|
auto [f, p, d] = m_fmls[i]();
|
|
terms.push_back(f);
|
|
if (p)
|
|
m_enable_proofs = true;
|
|
}
|
|
|
|
m_heap.reset();
|
|
reset_nodes();
|
|
|
|
// initialize nodes for terms in the original goal
|
|
unsigned max_id = 0;
|
|
for (expr* e : subterms::all(terms))
|
|
max_id = std::max(max_id, e->get_id());
|
|
|
|
m_nodes.reserve(max_id + 1);
|
|
m_heap.reserve(max_id + 1);
|
|
|
|
for (expr* e : subterms_postorder::all(terms)) {
|
|
SASSERT(get_node(e).is_root());
|
|
|
|
if (is_uninterp_const(e)) {
|
|
get_node(e); // ensure the node exists
|
|
m_heap.insert(e->get_id());
|
|
}
|
|
}
|
|
|
|
// mark top level terms
|
|
for (expr* e : terms)
|
|
get_node(e).set_top();
|
|
|
|
m_inverter.set_produce_proofs(m_enable_proofs);
|
|
|
|
}
|
|
|
|
expr* elim_unconstrained::reconstruct_term(node& n) {
|
|
SASSERT(n.is_root());
|
|
if (!n.is_dirty())
|
|
return n.term();
|
|
ptr_buffer<node> todo;
|
|
todo.push_back(&n);
|
|
expr_ref new_t(m);
|
|
while (!todo.empty()) {
|
|
node* np = todo.back();
|
|
if (!np->is_dirty()) {
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
SASSERT(np->is_root());
|
|
auto t = np->term();
|
|
unsigned sz0 = todo.size();
|
|
if (is_app(t)) {
|
|
for (expr* arg : *to_app(t)) {
|
|
node& r = root(arg);
|
|
if (r.is_dirty())
|
|
todo.push_back(&r);
|
|
}
|
|
if (todo.size() != sz0)
|
|
continue;
|
|
|
|
unsigned sz = m_args.size();
|
|
for (expr* arg : *to_app(t))
|
|
m_args.push_back(root(arg).term());
|
|
new_t = m.mk_app(to_app(t)->get_decl(), to_app(t)->get_num_args(), m_args.data() + sz);
|
|
m_args.shrink(sz);
|
|
}
|
|
else if (is_quantifier(t)) {
|
|
expr* body = to_quantifier(t)->get_expr();
|
|
node& n2 = root(body);
|
|
if (n2.is_dirty()) {
|
|
todo.push_back(&n2);
|
|
continue;
|
|
}
|
|
new_t = m.update_quantifier(to_quantifier(t), n2.term());
|
|
}
|
|
else
|
|
new_t = t;
|
|
node& new_n = get_node(new_t);
|
|
set_root(*np, new_n);
|
|
np->set_clean();
|
|
todo.pop_back();
|
|
}
|
|
return n.root().term();
|
|
}
|
|
|
|
/**
|
|
* walk nodes starting from lowest depth and reconstruct their normalized forms.
|
|
*/
|
|
void elim_unconstrained::reconstruct_terms() {
|
|
ptr_vector<node> nodes;
|
|
for (node* n : m_nodes)
|
|
if (n && n->is_root())
|
|
nodes.push_back(n);
|
|
|
|
std::stable_sort(nodes.begin(), nodes.end(), [&](node* a, node* b) { return get_depth(a->term()) < get_depth(b->term()); });
|
|
|
|
for (node* n : nodes)
|
|
reconstruct_term(*n);
|
|
}
|
|
|
|
|
|
void elim_unconstrained::assert_normalized(vector<dependent_expr>& old_fmls) {
|
|
|
|
for (unsigned i : indices()) {
|
|
auto [f, p, d] = m_fmls[i]();
|
|
node& n = root(f);
|
|
expr* g = n.term();
|
|
if (f == g)
|
|
continue;
|
|
old_fmls.push_back(m_fmls[i]);
|
|
TRACE("elim_unconstrained", tout << mk_bounded_pp(f, m) << " -> " << mk_bounded_pp(g, m) << "\n");
|
|
m_fmls.update(i, dependent_expr(m, g, nullptr, d));
|
|
}
|
|
}
|
|
|
|
void elim_unconstrained::update_model_trail(generic_model_converter& mc, vector<dependent_expr> const& old_fmls) {
|
|
auto& trail = m_fmls.model_trail();
|
|
|
|
// fresh declarations are added first since
|
|
// model reconstruction proceeds in reverse order of stack.
|
|
for (auto const& entry : mc.entries()) {
|
|
switch (entry.m_instruction) {
|
|
case generic_model_converter::instruction::HIDE:
|
|
trail.hide(entry.m_f);
|
|
break;
|
|
case generic_model_converter::instruction::ADD:
|
|
break;
|
|
}
|
|
}
|
|
scoped_ptr<expr_replacer> rp = mk_default_expr_replacer(m, false);
|
|
scoped_ptr<expr_substitution> sub = alloc(expr_substitution, m, true, false);
|
|
rp->set_substitution(sub.get());
|
|
expr_ref new_def(m);
|
|
for (unsigned i = mc.entries().size(); i-- > 0; ) {
|
|
auto const& entry = mc.entries()[i];
|
|
switch (entry.m_instruction) {
|
|
case generic_model_converter::instruction::HIDE:
|
|
break;
|
|
case generic_model_converter::instruction::ADD:
|
|
new_def = entry.m_def;
|
|
(*rp)(new_def);
|
|
sub->insert(m.mk_const(entry.m_f), new_def, nullptr, nullptr);
|
|
break;
|
|
}
|
|
}
|
|
trail.push(sub.detach(), old_fmls);
|
|
}
|
|
|
|
void elim_unconstrained::reduce() {
|
|
generic_model_converter_ref mc = alloc(generic_model_converter, m, "elim-unconstrained");
|
|
m_inverter.set_model_converter(mc.get());
|
|
m_created_compound = true;
|
|
for (unsigned rounds = 0; m_created_compound && rounds < 3; ++rounds) {
|
|
m_created_compound = false;
|
|
init_nodes();
|
|
eliminate();
|
|
reconstruct_terms();
|
|
vector<dependent_expr> old_fmls;
|
|
assert_normalized(old_fmls);
|
|
update_model_trail(*mc, old_fmls);
|
|
mc->reset();
|
|
}
|
|
}
|