mirror of
https://github.com/Z3Prover/z3
synced 2025-04-12 20:18:18 +00:00
433 lines
13 KiB
C++
433 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2021 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
polysat
|
|
|
|
Abstract:
|
|
|
|
Polynomial solver for modular arithmetic.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2021-03-19
|
|
|
|
--*/
|
|
|
|
#include "math/polysat/polysat.h"
|
|
|
|
namespace polysat {
|
|
|
|
std::ostream& constraint::display(std::ostream& out) const {
|
|
return out << "constraint";
|
|
}
|
|
|
|
std::ostream& linear::display(std::ostream& out) const {
|
|
return out << "linear";
|
|
}
|
|
|
|
std::ostream& mono::display(std::ostream& out) const {
|
|
return out << "mono";
|
|
}
|
|
|
|
dd::pdd_manager& solver::sz2pdd(unsigned sz) {
|
|
m_pdd.reserve(sz + 1);
|
|
if (!m_pdd[sz])
|
|
m_pdd.set(sz, alloc(dd::pdd_manager, 1000));
|
|
return *m_pdd[sz];
|
|
}
|
|
|
|
bool solver::is_viable(unsigned var, rational const& val) {
|
|
bdd b = m_viable[var];
|
|
for (unsigned k = size(var); k-- > 0 && !b.is_false(); )
|
|
b &= val.get_bit(k) ? m_bdd.mk_var(k) : m_bdd.mk_nvar(k);
|
|
return !b.is_false();
|
|
}
|
|
|
|
struct solver::del_var : public trail {
|
|
solver& s;
|
|
del_var(solver& s): s(s) {}
|
|
void undo() override { s.do_del_var(); }
|
|
};
|
|
|
|
struct solver::del_constraint : public trail {
|
|
solver& s;
|
|
del_constraint(solver& s): s(s) {}
|
|
void undo() override { s.do_del_constraint(); }
|
|
};
|
|
|
|
struct solver::var_unassign : public trail {
|
|
solver& s;
|
|
var_unassign(solver& s): s(s) {}
|
|
void undo() override { s.do_var_unassign(); }
|
|
};
|
|
|
|
|
|
solver::solver(trail_stack& s):
|
|
m_trail(s),
|
|
m_bdd(1000),
|
|
m_free_vars(m_activity) {
|
|
}
|
|
|
|
solver::~solver() {}
|
|
|
|
lbool solver::check_sat() {
|
|
return l_undef;
|
|
}
|
|
|
|
unsigned solver::add_var(unsigned sz) {
|
|
unsigned v = m_viable.size();
|
|
m_value.push_back(rational::zero());
|
|
m_justification.push_back(justification::unassigned());
|
|
m_viable.push_back(m_bdd.mk_true());
|
|
m_vdeps.push_back(m_dep_manager.mk_empty());
|
|
m_cjust.push_back(constraints());
|
|
m_watch.push_back(ptr_vector<constraint>());
|
|
m_activity.push_back(0);
|
|
m_vars.push_back(sz2pdd(sz).mk_var(v));
|
|
m_size.push_back(sz);
|
|
m_trail.push(del_var(*this));
|
|
return v;
|
|
}
|
|
|
|
void solver::do_del_var() {
|
|
// TODO also remove v from all learned constraints.
|
|
unsigned v = m_viable.size() - 1;
|
|
m_free_vars.del_var_eh(v);
|
|
m_viable.pop_back();
|
|
m_vdeps.pop_back();
|
|
m_cjust.pop_back();
|
|
m_value.pop_back();
|
|
m_justification.pop_back();
|
|
m_watch.pop_back();
|
|
m_activity.pop_back();
|
|
m_vars.pop_back();
|
|
m_size.pop_back();
|
|
}
|
|
|
|
void solver::do_del_constraint() {
|
|
// TODO rewrite to allow for learned constraints
|
|
// so have to gc these.
|
|
constraint& c = *m_constraints.back();
|
|
if (c.vars().size() > 0)
|
|
erase_watch(c.vars()[0], c);
|
|
if (c.vars().size() > 1)
|
|
erase_watch(c.vars()[1], c);
|
|
m_constraints.pop_back();
|
|
}
|
|
|
|
void solver::do_var_unassign() {
|
|
unsigned v = m_search.back();
|
|
m_justification[v] = justification::unassigned();
|
|
m_free_vars.unassign_var_eh(v);
|
|
}
|
|
|
|
void solver::add_eq(pdd const& p, unsigned dep) {
|
|
//
|
|
// TODO reduce p using assignment (at current level,
|
|
// assuming constraint is removed also at current level).
|
|
//
|
|
constraint* c = constraint::eq(p, m_dep_manager.mk_leaf(dep));
|
|
m_constraints.push_back(c);
|
|
auto const& vars = c->vars();
|
|
if (vars.size() > 0)
|
|
m_watch[vars[0]].push_back(c);
|
|
if (vars.size() > 1)
|
|
m_watch[vars[1]].push_back(c);
|
|
m_trail.push(del_constraint(*this));
|
|
}
|
|
|
|
void solver::add_diseq(pdd const& p, unsigned dep) {
|
|
#if 0
|
|
// Basically:
|
|
auto slack = add_var(p.size());
|
|
p = p + var(slack);
|
|
add_eq(p, dep);
|
|
m_viable[slack] &= slack != 0;
|
|
#endif
|
|
}
|
|
|
|
void solver::add_ule(pdd const& p, pdd const& q, unsigned dep) {
|
|
// save for later
|
|
}
|
|
|
|
void solver::add_sle(pdd const& p, pdd const& q, unsigned dep) {
|
|
// save for later
|
|
}
|
|
|
|
void solver::assign(unsigned var, unsigned index, bool value, unsigned dep) {
|
|
m_viable[var] &= value ? m_bdd.mk_var(index) : m_bdd.mk_nvar(index);
|
|
m_trail.push(vector_value_trail<u_dependency*, false>(m_vdeps, var));
|
|
m_vdeps[var] = m_dep_manager.mk_join(m_vdeps[var], m_dep_manager.mk_leaf(dep));
|
|
if (m_viable[var].is_false()) {
|
|
// TBD: set conflict
|
|
}
|
|
}
|
|
|
|
bool solver::can_propagate() {
|
|
return m_qhead < m_search.size() && !is_conflict();
|
|
}
|
|
|
|
void solver::propagate() {
|
|
m_trail.push(value_trail(m_qhead));
|
|
while (can_propagate())
|
|
propagate(m_search[m_qhead++]);
|
|
}
|
|
|
|
void solver::propagate(unsigned v) {
|
|
auto& wlist = m_watch[v];
|
|
unsigned i = 0, j = 0, sz = wlist.size();
|
|
for (; i < sz && !is_conflict(); ++i)
|
|
if (!propagate(v, *wlist[i]))
|
|
wlist[j++] = wlist[i];
|
|
for (; i < sz; ++i)
|
|
wlist[j++] = wlist[i];
|
|
wlist.shrink(j);
|
|
}
|
|
|
|
bool solver::propagate(unsigned v, constraint& c) {
|
|
switch (c.kind()) {
|
|
case ckind_t::eq_t:
|
|
return propagate_eq(v, c);
|
|
case ckind_t::ule_t:
|
|
case ckind_t::sle_t:
|
|
NOT_IMPLEMENTED_YET();
|
|
return false;
|
|
}
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
bool solver::propagate_eq(unsigned v, constraint& c) {
|
|
SASSERT(c.kind() == ckind_t::eq_t);
|
|
SASSERT(!c.vars().empty());
|
|
auto var = m_vars[v].var();
|
|
auto& vars = c.vars();
|
|
unsigned idx = 0;
|
|
if (vars[idx] != v)
|
|
idx = 1;
|
|
SASSERT(v == vars[idx]);
|
|
// find other watch variable.
|
|
for (unsigned i = vars.size(); i-- > 2; ) {
|
|
if (!is_assigned(vars[i])) {
|
|
std::swap(vars[idx], vars[i]);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
vector<std::pair<unsigned, rational>> sub;
|
|
for (auto w : vars)
|
|
if (is_assigned(w))
|
|
sub.push_back(std::make_pair(w, m_value[w]));
|
|
|
|
auto p = c.p().subst_val(sub);
|
|
if (p.is_zero())
|
|
return false;
|
|
if (p.is_non_zero()) {
|
|
// we could tag constraint to allow early substitution before
|
|
// swapping watch variable in case we can detect conflict earlier.
|
|
set_conflict(c);
|
|
return false;
|
|
}
|
|
|
|
// one variable remains unassigned.
|
|
auto other_var = vars[1 - idx];
|
|
SASSERT(!is_assigned(other_var));
|
|
|
|
// Detect and apply unit propagation.
|
|
|
|
if (!p.is_linear())
|
|
return false;
|
|
|
|
// a*x + b == 0
|
|
rational a = p.hi().val();
|
|
rational b = p.lo().val();
|
|
rational inv_a;
|
|
if (p.lo().val().is_odd()) {
|
|
// v1 = -b * inverse(a)
|
|
unsigned sz = p.power_of_2();
|
|
VERIFY(a.mult_inverse(sz, inv_a));
|
|
rational val = mod(inv_a * -b, rational::power_of_two(sz));
|
|
m_cjust[other_var].push_back(&c);
|
|
m_trail.push(push_back_vector(m_cjust[other_var]));
|
|
propagate(other_var, val, justification::propagation(m_level));
|
|
return false;
|
|
}
|
|
|
|
// TBD
|
|
// constrain viable using condition on x
|
|
// 2*x + 2 == 0 mod 4 => x is odd
|
|
|
|
return false;
|
|
}
|
|
|
|
void solver::propagate(unsigned var, rational const& val, justification const& j) {
|
|
SASSERT(j.is_propagation());
|
|
if (is_viable(var, val))
|
|
assign_core(var, val, j);
|
|
else
|
|
set_conflict(*m_cjust[var].back());
|
|
}
|
|
|
|
void solver::inc_level() {
|
|
m_trail.push(value_trail(m_level));
|
|
++m_level;
|
|
}
|
|
|
|
void solver::erase_watch(unsigned v, constraint& c) {
|
|
if (v == UINT_MAX)
|
|
return;
|
|
auto& wlist = m_watch[v];
|
|
unsigned sz = wlist.size();
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
if (&c == wlist[i]) {
|
|
wlist[i] = wlist.back();
|
|
wlist.pop_back();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void solver::decide(rational & val, unsigned& var) {
|
|
SASSERT(can_decide());
|
|
inc_level();
|
|
var = m_free_vars.next_var();
|
|
auto viable = m_viable[var];
|
|
SASSERT(!viable.is_false());
|
|
// TBD, choose some value from viable and construct val.
|
|
assign_core(var, val, justification::decision(m_level));
|
|
}
|
|
|
|
void solver::assign_core(unsigned var, rational const& val, justification const& j) {
|
|
SASSERT(is_viable(var, val));
|
|
m_trail.push(var_unassign(*this));
|
|
m_search.push_back(var);
|
|
m_value[var] = val;
|
|
m_justification[var] = j;
|
|
}
|
|
|
|
/**
|
|
* Conflict resolution.
|
|
* - m_conflict is a constraint infeasible in the current assignment.
|
|
* 1. walk m_search from top down until last variable in m_conflict.
|
|
* 2. resolve constraints in m_cjust to isolate lowest degree polynomials
|
|
* using variable.
|
|
* Use Olm-Seidl division by powers of 2 to preserve invertibility.
|
|
* 3. resolve conflict with result of resolution.
|
|
* 4. If the resulting equality is still infeasible continue, otherwise bail out
|
|
* and undo the last assignment by accumulating conflict trail (but without resolution).
|
|
* 5. When hitting the last decision, determine whether conflict polynomial is asserting,
|
|
* If so, apply propagation.
|
|
* 6. Otherwise, add accumulated constraints to explanation for the next viable solution, prune
|
|
* viable solutions by excluding the previous guess.
|
|
*/
|
|
unsigned solver::resolve_conflict(unsigned_vector& deps) {
|
|
SASSERT(m_conflict);
|
|
constraint& c = *m_conflict;
|
|
m_conflict = nullptr;
|
|
pdd p = c.p();
|
|
reset_marks();
|
|
for (auto v : c.vars())
|
|
set_mark(v);
|
|
unsigned v = UINT_MAX;
|
|
unsigned i = m_search.size();
|
|
vector<std::pair<unsigned, rational>> sub;
|
|
for (auto w : m_search)
|
|
sub.push_back(std::make_pair(w, m_value[w]));
|
|
|
|
for (; i-- > 0; ) {
|
|
v = m_search[i];
|
|
if (!is_marked(v))
|
|
continue;
|
|
pdd q = isolate(v);
|
|
pdd r = resolve(v, q, p);
|
|
pdd rval = r.subst_val(sub);
|
|
if (!rval.is_non_zero())
|
|
goto backtrack;
|
|
if (r.is_val()) {
|
|
SASSERT(!r.is_zero());
|
|
// TBD: UNSAT, set conflict
|
|
return 0;
|
|
}
|
|
justification& j = m_justification[v];
|
|
if (j.is_decision()) {
|
|
// TBD: revert value and add constraint
|
|
// propagate if new value is given uniquely
|
|
// set conflict if viable set is empty
|
|
// adding r and reverting last decision.
|
|
break;
|
|
}
|
|
SASSERT(j.is_propagation());
|
|
for (auto w : r.free_vars())
|
|
set_mark(w);
|
|
p = r;
|
|
}
|
|
UNREACHABLE();
|
|
|
|
backtrack:
|
|
do {
|
|
v = m_search[i];
|
|
justification& j = m_justification[v];
|
|
if (j.is_decision()) {
|
|
// TBD: flip last decision.
|
|
}
|
|
}
|
|
while (i-- > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* resolve polynomials associated with unit propagating on v
|
|
* producing polynomial that isolates v to lowest degree
|
|
* and lowest power of 2.
|
|
*/
|
|
pdd solver::isolate(unsigned v) {
|
|
if (m_cjust[v].empty())
|
|
return sz2pdd(m_size[v]).zero();
|
|
pdd p = m_cjust[v][0]->p();
|
|
for (unsigned i = m_cjust[v].size(); i-- > 1; ) {
|
|
// TBD reduce with respect to v
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Return residue of superposing p and q with respect to v.
|
|
*/
|
|
pdd solver::resolve(unsigned v, pdd const& p, pdd const& q) {
|
|
// TBD remove as much trace of v as possible.
|
|
return p;
|
|
}
|
|
|
|
void solver::reset_marks() {
|
|
m_marks.reserve(m_vars.size());
|
|
m_clock++;
|
|
if (m_clock != 0)
|
|
return;
|
|
m_clock++;
|
|
m_marks.fill(0);
|
|
}
|
|
|
|
bool solver::can_learn() {
|
|
return false;
|
|
}
|
|
|
|
void solver::learn(constraint& c, unsigned_vector& deps) {
|
|
|
|
}
|
|
|
|
void solver::learn(vector<constraint>& cs, unsigned_vector& deps) {
|
|
|
|
}
|
|
|
|
std::ostream& solver::display(std::ostream& out) const {
|
|
return out;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|