mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
418 lines
12 KiB
C++
418 lines
12 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
<name>
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Lev Nachmanson (levnach)
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
#pragma once
|
|
#include "math/lp/indexed_vector.h"
|
|
#include "util/map.h"
|
|
|
|
namespace lp {
|
|
// represents a linear expressieon
|
|
class lar_term {
|
|
typedef unsigned lpvar;
|
|
protected:
|
|
u_map<mpq> m_coeffs;
|
|
// the column index related to the term
|
|
lpvar m_j = -1;
|
|
public:
|
|
|
|
|
|
// the column index related to the term
|
|
lpvar j() const { return m_j; }
|
|
void set_j(unsigned j) {
|
|
m_j = j;
|
|
}
|
|
void add_monomial(const mpq& c, unsigned j) {
|
|
if (c.is_zero())
|
|
return;
|
|
auto *e = m_coeffs.find_core(j);
|
|
if (e == nullptr) {
|
|
m_coeffs.insert(j, c);
|
|
} else {
|
|
e->get_data().m_value += c;
|
|
if (e->get_data().m_value.is_zero())
|
|
m_coeffs.erase(j);
|
|
}
|
|
}
|
|
|
|
void sub_monomial(const mpq& c, unsigned j) {
|
|
if (c.is_zero())
|
|
return;
|
|
auto *e = m_coeffs.find_core(j);
|
|
if (e == nullptr) {
|
|
m_coeffs.insert(j, -c);
|
|
} else {
|
|
e->get_data().m_value -= c;
|
|
if (e->get_data().m_value.is_zero())
|
|
m_coeffs.erase(j);
|
|
}
|
|
}
|
|
|
|
void add_var(lpvar j) {
|
|
rational c(1);
|
|
add_monomial(c, j);
|
|
}
|
|
|
|
bool is_empty() const {
|
|
return m_coeffs.empty(); // && is_zero(m_v);
|
|
}
|
|
|
|
unsigned size() const { return static_cast<unsigned>(m_coeffs.size()); }
|
|
|
|
u_map<mpq> const &coeffs() const {
|
|
return m_coeffs;
|
|
}
|
|
|
|
u_map<mpq> &coeffs() {
|
|
return m_coeffs;
|
|
}
|
|
|
|
|
|
void subst_by_term(const lar_term& t, unsigned term_column) {
|
|
const auto* it = this->m_coeffs.find_core(term_column);
|
|
if (it == nullptr) return;
|
|
mpq a = it->get_data().m_value;
|
|
this->m_coeffs.erase(term_column);
|
|
for (auto p : t) {
|
|
this->add_monomial(a * p.coeff(), p.j());
|
|
}
|
|
}
|
|
// constructors
|
|
lar_term() = default;
|
|
lar_term(lar_term&& other) noexcept = default;
|
|
// copy assignment operator
|
|
lar_term& operator=(const lar_term& other) = default;
|
|
// move assignment operator
|
|
lar_term& operator=(lar_term&& other) noexcept = default;
|
|
~lar_term() = default;
|
|
lar_term(const lar_term& a) {
|
|
for (auto const& p : a) {
|
|
add_monomial(p.coeff(), p.var());
|
|
}
|
|
m_j = a.j();
|
|
}
|
|
|
|
lar_term(const vector<std::pair<mpq, unsigned>>& coeffs) {
|
|
for (auto const& p : coeffs) {
|
|
add_monomial(p.first, p.second);
|
|
}
|
|
}
|
|
lar_term(lpvar v1, lpvar v2) {
|
|
add_monomial(rational::one(), v1);
|
|
add_monomial(rational::one(), v2);
|
|
}
|
|
lar_term(lpvar v1) {
|
|
add_monomial(rational::one(), v1);
|
|
}
|
|
lar_term(rational const& a, lpvar v1) {
|
|
add_monomial(a, v1);
|
|
}
|
|
lar_term(lpvar v1, rational const& b, lpvar v2) {
|
|
add_monomial(rational::one(), v1);
|
|
add_monomial(b, v2);
|
|
}
|
|
lar_term(rational const& a, lpvar v1, rational const& b, lpvar v2) {
|
|
add_monomial(a, v1);
|
|
add_monomial(b, v2);
|
|
}
|
|
bool operator==(const lar_term & a) const { return false; } // take care not to create identical terms
|
|
bool operator!=(const lar_term & a) const { return ! (*this == a);}
|
|
// some terms get used in add constraint
|
|
// it is the same as the offset in the m_constraints
|
|
|
|
vector<std::pair<mpq, lpvar>> coeffs_as_vector() const {
|
|
vector<std::pair<mpq, lpvar>> ret;
|
|
for (const auto & [c, v] : m_coeffs)
|
|
ret.push_back({v, c});
|
|
return ret;
|
|
}
|
|
|
|
// j is the basic variable to substitute
|
|
void subst_in_row(unsigned j, indexed_vector<mpq> & li) {
|
|
const auto* it = m_coeffs.find_core(j);
|
|
if (it == nullptr) return;
|
|
const mpq & b = it->get_data().m_value;
|
|
for (unsigned it_j :li.m_index) {
|
|
add_monomial(- b * li.m_data[it_j], it_j);
|
|
}
|
|
m_coeffs.erase(j);
|
|
}
|
|
|
|
|
|
const mpq & get_coeff(unsigned j) const {
|
|
const auto* it = m_coeffs.find_core(j);
|
|
SASSERT(it != nullptr);
|
|
return it->get_data().m_value;
|
|
}
|
|
|
|
mpq & get_coeff(unsigned j){
|
|
auto* it = m_coeffs.find_core(j);
|
|
SASSERT(it != nullptr);
|
|
return it->get_data().m_value;
|
|
}
|
|
|
|
void erase_var(unsigned j) {
|
|
m_coeffs.erase(j);
|
|
}
|
|
// the monomial ax[j] is substituted by ax[k]
|
|
void subst_index(unsigned j, unsigned k) {
|
|
auto* it = m_coeffs.find_core(j);
|
|
if (it == nullptr) return;
|
|
mpq b = it->get_data().m_value;
|
|
m_coeffs.erase(j);
|
|
m_coeffs.insert(k, b);
|
|
}
|
|
|
|
bool contains(unsigned j) const {
|
|
return m_coeffs.contains(j);
|
|
}
|
|
|
|
void negate() {
|
|
for (auto & t : m_coeffs)
|
|
t.m_value.neg();
|
|
}
|
|
|
|
template <typename T>
|
|
T apply(const vector<T>& x) const {
|
|
T ret(0);
|
|
for (const auto & t : m_coeffs) {
|
|
ret += t.m_value * x[t.m_key];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
lar_term clone() const {
|
|
lar_term ret;
|
|
for (const auto& p : *this) {
|
|
ret.add_monomial(p.coeff(), p.j());
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
lar_term operator+(const lar_term& other) const {
|
|
lar_term ret = other.clone();
|
|
for (const auto& p : *this) {
|
|
ret.add_monomial(p.coeff(), p.j());
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
friend lar_term operator*(const mpq& k, const lar_term& term) {
|
|
lar_term r;
|
|
for (const auto& p : term) {
|
|
r.add_monomial(p.coeff()*k, p.j());
|
|
}
|
|
return r;
|
|
}
|
|
|
|
friend lar_term operator-(const lar_term& a, const lar_term& b) {
|
|
lar_term r(a);
|
|
for (const auto& p : b) {
|
|
r.sub_monomial(p.coeff(), p.j());
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
lar_term& operator+=(const lar_term& a) {
|
|
for (const auto& p : a) {
|
|
add_monomial(p.coeff(), p.j());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
lar_term& operator-=(const lar_term& a) {
|
|
for (const auto& p : a) {
|
|
sub_monomial(p.coeff(), p.j());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
lar_term& operator*=(mpq const& k) {
|
|
for (auto & t : m_coeffs)
|
|
t.m_value *= k;
|
|
return *this;
|
|
}
|
|
|
|
void clear() {
|
|
m_coeffs.reset();
|
|
}
|
|
|
|
struct ival {
|
|
lpvar m_var;
|
|
const mpq & m_coeff;
|
|
ival(lpvar var, const mpq & val) : m_var(var), m_coeff(val) { }
|
|
lpvar j() const { return m_var; }
|
|
lpvar var() const { return m_var; }
|
|
const mpq & coeff() const { return m_coeff; }
|
|
};
|
|
|
|
class const_iterator {
|
|
u_map<mpq>::iterator m_it;
|
|
public:
|
|
ival operator*() const { return ival(m_it->m_key, m_it->m_value); }
|
|
const_iterator operator++() { const_iterator i = *this; m_it++; return i; }
|
|
const_iterator operator++(int) { m_it++; return *this; }
|
|
const_iterator(u_map<mpq>::iterator it) : m_it(it) {}
|
|
bool operator==(const const_iterator &other) const { return m_it == other.m_it; }
|
|
bool operator!=(const const_iterator &other) const { return !(*this == other); }
|
|
|
|
};
|
|
|
|
bool is_normalized() const {
|
|
lpvar min_var = -1;
|
|
mpq c;
|
|
for (ival p : *this) {
|
|
if (p.j() < min_var) {
|
|
min_var = p.j();
|
|
}
|
|
}
|
|
lar_term r;
|
|
for (ival p : *this) {
|
|
if (p.j() == min_var) {
|
|
return p.coeff().is_one();
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
// a is the coefficient by which we divided the term to normalize it
|
|
lar_term get_normalized_by_min_var(mpq& a) const {
|
|
if (m_coeffs.empty()) {
|
|
a = mpq(1, 1);
|
|
return *this;
|
|
}
|
|
a = m_coeffs.begin()->m_value;
|
|
if (a.is_one()) {
|
|
return *this;
|
|
}
|
|
lar_term r;
|
|
auto it = m_coeffs.begin();
|
|
r.add_var(it->m_key);
|
|
it++;
|
|
for(;it != m_coeffs.end(); it++) {
|
|
r.add_monomial(it->m_value / a, it->m_key);
|
|
}
|
|
return r;
|
|
}
|
|
const_iterator begin() const { return m_coeffs.begin();}
|
|
const_iterator end() const { return m_coeffs.end(); }
|
|
// This iterator yields all (coefficient, variable) pairs
|
|
// plus one final pair: (mpq(-1), j()).
|
|
class ext_const_iterator {
|
|
// We'll store a reference to the lar_term, and an
|
|
// iterator into m_coeffs. Once we reach end of m_coeffs,
|
|
// we'll yield exactly one extra pair, then we are done.
|
|
const lar_term& m_term;
|
|
lar_term::const_iterator m_it;
|
|
bool m_done; // Have we gone past m_coeffs?
|
|
|
|
public:
|
|
// Construct either a "begin" iterator (end=false) or "end" iterator (end=true).
|
|
ext_const_iterator(const lar_term& t, bool is_end)
|
|
: m_term(t)
|
|
, m_it(is_end ? t.end() : t.begin())
|
|
, m_done(false)
|
|
{
|
|
// If it is_end == true, we represent a genuine end-iterator.
|
|
if (is_end) {
|
|
m_done = true;
|
|
}
|
|
}
|
|
|
|
// Compare iterators. Two iterators are equal if both are "done" or hold the same internal iterator.
|
|
bool operator==(ext_const_iterator const &other) const {
|
|
// They are equal if they are both at the special extra pair or both at the same spot in m_coeffs.
|
|
if (m_done && other.m_done) {
|
|
return true;
|
|
}
|
|
return (!m_done && !other.m_done && m_it == other.m_it);
|
|
}
|
|
|
|
bool operator!=(ext_const_iterator const &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
// Return the element we point to:
|
|
// 1) If we haven't finished m_coeffs, yield (coefficient, var).
|
|
// 2) If we've iterated past m_coeffs exactly once, return (mpq(-1), j()).
|
|
auto operator*() const {
|
|
if (!m_done && m_it != m_term.end()) {
|
|
// Normal monomial from m_coeffs
|
|
// Each entry is of type { m_value, m_key } in this context
|
|
return *m_it;
|
|
}
|
|
else {
|
|
// We've gone past normal entries, so return the extra pair
|
|
// (mpq(-1), j()).
|
|
return ival(m_term.j(), rational::minus_one());
|
|
}
|
|
}
|
|
|
|
// Pre-increment
|
|
ext_const_iterator& operator++() {
|
|
if (!m_done && m_it != m_term.end()) {
|
|
++m_it;
|
|
}
|
|
else {
|
|
// We were about to return that extra pair:
|
|
// after we move once more, we are done.
|
|
m_done = true;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Post-increment
|
|
ext_const_iterator operator++(int) {
|
|
ext_const_iterator temp(*this);
|
|
++(*this);
|
|
return temp;
|
|
}
|
|
};
|
|
|
|
// Return the begin/end of our extended iteration.
|
|
// begin: starts at first real monomial
|
|
// end: marks a finalized end of iteration
|
|
ext_const_iterator ext_coeffs_begin() const {
|
|
return ext_const_iterator(*this, /*is_end=*/false);
|
|
}
|
|
ext_const_iterator ext_coeffs_end() const {
|
|
return ext_const_iterator(*this, /*is_end=*/true);
|
|
}
|
|
|
|
// Provide a small helper for "range-based for":
|
|
// for (auto & [coef, var] : myTerm.ext_coeffs()) { ... }
|
|
struct ext_range {
|
|
ext_const_iterator b, e;
|
|
ext_const_iterator begin() const { return b; }
|
|
ext_const_iterator end() const { return e; }
|
|
};
|
|
|
|
// return an object that can be used in range-based for loops
|
|
ext_range ext_coeffs() const {
|
|
return { ext_coeffs_begin(), ext_coeffs_end() };
|
|
}
|
|
|
|
};
|
|
}
|