mirror of
https://github.com/Z3Prover/z3
synced 2025-04-04 16:44:07 +00:00
401 lines
12 KiB
Python
401 lines
12 KiB
Python
from z3 import *
|
|
import heapq
|
|
|
|
|
|
# Simplistic (and fragile) converter from
|
|
# a class of Horn clauses corresponding to
|
|
# a transition system into a transition system
|
|
# representation as <init, trans, goal>
|
|
# It assumes it is given three Horn clauses
|
|
# of the form:
|
|
# init(x) => Invariant(x)
|
|
# Invariant(x) and trans(x,x') => Invariant(x')
|
|
# Invariant(x) and goal(x) => Goal(x)
|
|
# where Invariant and Goal are uninterpreted predicates
|
|
|
|
class Horn2Transitions:
|
|
def __init__(self):
|
|
self.trans = True
|
|
self.init = True
|
|
self.inputs = []
|
|
self.goal = True
|
|
self.index = 0
|
|
|
|
def parse(self, file):
|
|
fp = Fixedpoint()
|
|
goals = fp.parse_file(file)
|
|
for r in fp.get_rules():
|
|
if not is_quantifier(r):
|
|
continue
|
|
b = r.body()
|
|
if not is_implies(b):
|
|
continue
|
|
f = b.arg(0)
|
|
g = b.arg(1)
|
|
if self.is_goal(f, g):
|
|
continue
|
|
if self.is_transition(f, g):
|
|
continue
|
|
if self.is_init(f, g):
|
|
continue
|
|
|
|
def is_pred(self, p, name):
|
|
return is_app(p) and p.decl().name() == name
|
|
|
|
def is_goal(self, body, head):
|
|
if not self.is_pred(head, "Goal"):
|
|
return False
|
|
pred, inv = self.is_body(body)
|
|
if pred is None:
|
|
return False
|
|
self.goal = self.subst_vars("x", inv, pred)
|
|
self.goal = self.subst_vars("i", self.goal, self.goal)
|
|
self.inputs += self.vars
|
|
self.inputs = list(set(self.inputs))
|
|
return True
|
|
|
|
def is_body(self, body):
|
|
if not is_and(body):
|
|
return None, None
|
|
fmls = [f for f in body.children() if self.is_inv(f) is None]
|
|
inv = None
|
|
for f in body.children():
|
|
if self.is_inv(f) is not None:
|
|
inv = f;
|
|
break
|
|
return And(fmls), inv
|
|
|
|
def is_inv(self, f):
|
|
if self.is_pred(f, "Invariant"):
|
|
return f
|
|
return None
|
|
|
|
def is_transition(self, body, head):
|
|
pred, inv0 = self.is_body(body)
|
|
if pred is None:
|
|
return False
|
|
inv1 = self.is_inv(head)
|
|
if inv1 is None:
|
|
return False
|
|
pred = self.subst_vars("x", inv0, pred)
|
|
self.xs = self.vars
|
|
pred = self.subst_vars("xn", inv1, pred)
|
|
self.xns = self.vars
|
|
pred = self.subst_vars("i", pred, pred)
|
|
self.inputs += self.vars
|
|
self.inputs = list(set(self.inputs))
|
|
self.trans = pred
|
|
return True
|
|
|
|
def is_init(self, body, head):
|
|
for f in body.children():
|
|
if self.is_inv(f) is not None:
|
|
return False
|
|
inv = self.is_inv(head)
|
|
if inv is None:
|
|
return False
|
|
self.init = self.subst_vars("x", inv, body)
|
|
return True
|
|
|
|
def subst_vars(self, prefix, inv, fml):
|
|
subst = self.mk_subst(prefix, inv)
|
|
self.vars = [ v for (k,v) in subst ]
|
|
return substitute(fml, subst)
|
|
|
|
def mk_subst(self, prefix, inv):
|
|
self.index = 0
|
|
if self.is_inv(inv) is not None:
|
|
return [(f, self.mk_bool(prefix)) for f in inv.children()]
|
|
else:
|
|
vars = self.get_vars(inv)
|
|
return [(f, self.mk_bool(prefix)) for f in vars]
|
|
|
|
def mk_bool(self, prefix):
|
|
self.index += 1
|
|
return Bool("%s%d" % (prefix, self.index))
|
|
|
|
def get_vars(self, f, rs=[]):
|
|
if is_var(f):
|
|
return z3util.vset(rs + [f], str)
|
|
else:
|
|
for f_ in f.children():
|
|
rs = self.get_vars(f_, rs)
|
|
return z3util.vset(rs, str)
|
|
|
|
# Produce a finite domain solver.
|
|
# The theory QF_FD covers bit-vector formulas
|
|
# and pseudo-Boolean constraints.
|
|
# By default cardinality and pseudo-Boolean
|
|
# constraints are converted to clauses. To override
|
|
# this default for cardinality constraints
|
|
# we set sat.cardinality.solver to True
|
|
|
|
def fd_solver():
|
|
s = SolverFor("QF_FD")
|
|
s.set("sat.cardinality.solver", True)
|
|
return s
|
|
|
|
|
|
# negate, avoid double negation
|
|
def negate(f):
|
|
if is_not(f):
|
|
return f.arg(0)
|
|
else:
|
|
return Not(f)
|
|
|
|
def cube2clause(cube):
|
|
return Or([negate(f) for f in cube])
|
|
|
|
class State:
|
|
def __init__(self, s):
|
|
self.R = set([])
|
|
self.solver = s
|
|
|
|
def add(self, clause):
|
|
if clause not in self.R:
|
|
self.R |= { clause }
|
|
self.solver.add(clause)
|
|
|
|
class Goal:
|
|
def __init__(self, cube, parent, level):
|
|
self.level = level
|
|
self.cube = cube
|
|
self.parent = parent
|
|
|
|
def __lt__(self, other):
|
|
return self.level < other.level
|
|
|
|
def is_seq(f):
|
|
return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
|
|
|
|
# Check if the initial state is bad
|
|
def check_disjoint(a, b):
|
|
s = fd_solver()
|
|
s.add(a)
|
|
s.add(b)
|
|
return unsat == s.check()
|
|
|
|
|
|
# Remove clauses that are subsumed
|
|
def prune(R):
|
|
removed = set([])
|
|
s = fd_solver()
|
|
for f1 in R:
|
|
s.push()
|
|
for f2 in R:
|
|
if f2 not in removed:
|
|
s.add(Not(f2) if f1.eq(f2) else f2)
|
|
if s.check() == unsat:
|
|
removed |= { f1 }
|
|
s.pop()
|
|
return R - removed
|
|
|
|
class MiniIC3:
|
|
def __init__(self, init, trans, goal, x0, inputs, xn):
|
|
self.x0 = x0
|
|
self.inputs = inputs
|
|
self.xn = xn
|
|
self.init = init
|
|
self.bad = goal
|
|
self.trans = trans
|
|
self.min_cube_solver = fd_solver()
|
|
self.min_cube_solver.add(Not(trans))
|
|
self.goals = []
|
|
s = State(fd_solver())
|
|
s.add(init)
|
|
s.solver.add(trans)
|
|
self.states = [s]
|
|
self.s_bad = fd_solver()
|
|
self.s_good = fd_solver()
|
|
self.s_bad.add(self.bad)
|
|
self.s_good.add(Not(self.bad))
|
|
|
|
def next(self, f):
|
|
if is_seq(f):
|
|
return [self.next(f1) for f1 in f]
|
|
return substitute(f, [p for p in zip(self.x0, self.xn)])
|
|
|
|
def prev(self, f):
|
|
if is_seq(f):
|
|
return [self.prev(f1) for f1 in f]
|
|
return substitute(f, [p for p in zip(self.xn, self.x0)])
|
|
|
|
def add_solver(self):
|
|
s = fd_solver()
|
|
s.add(self.trans)
|
|
self.states += [State(s)]
|
|
|
|
def R(self, i):
|
|
return And(self.states[i].R)
|
|
|
|
# Check if there are two states next to each other that have the same clauses.
|
|
def is_valid(self):
|
|
i = 1
|
|
while i + 1 < len(self.states):
|
|
if not (self.states[i].R - self.states[i+1].R):
|
|
return And(prune(self.states[i].R))
|
|
i += 1
|
|
return None
|
|
|
|
def value2literal(self, m, x):
|
|
value = m.eval(x)
|
|
if is_true(value):
|
|
return x
|
|
if is_false(value):
|
|
return Not(x)
|
|
return None
|
|
|
|
def values2literals(self, m, xs):
|
|
p = [self.value2literal(m, x) for x in xs]
|
|
return [x for x in p if x is not None]
|
|
|
|
def project0(self, m):
|
|
return self.values2literals(m, self.x0)
|
|
|
|
def projectI(self, m):
|
|
return self.values2literals(m, self.inputs)
|
|
|
|
def projectN(self, m):
|
|
return self.values2literals(m, self.xn)
|
|
|
|
# Determine if there is a cube for the current state
|
|
# that is potentially reachable.
|
|
def unfold(self):
|
|
core = []
|
|
self.s_bad.push()
|
|
R = self.R(len(self.states)-1)
|
|
self.s_bad.add(R)
|
|
is_sat = self.s_bad.check()
|
|
if is_sat == sat:
|
|
m = self.s_bad.model()
|
|
cube = self.project0(m)
|
|
props = cube + self.projectI(m)
|
|
self.s_good.push()
|
|
self.s_good.add(R)
|
|
is_sat2 = self.s_good.check(props)
|
|
assert is_sat2 == unsat
|
|
core = self.s_good.unsat_core()
|
|
core = [c for c in core if c in set(cube)]
|
|
self.s_good.pop()
|
|
self.s_bad.pop()
|
|
return is_sat, core
|
|
|
|
# Block a cube by asserting the clause corresponding to its negation
|
|
def block_cube(self, i, cube):
|
|
self.assert_clause(i, cube2clause(cube))
|
|
|
|
# Add a clause to levels 0 until i
|
|
def assert_clause(self, i, clause):
|
|
for j in range(i + 1):
|
|
self.states[j].add(clause)
|
|
|
|
# minimize cube that is core of Dual solver.
|
|
# this assumes that props & cube => Trans
|
|
def minimize_cube(self, cube, inputs, lits):
|
|
is_sat = self.min_cube_solver.check(lits + [c for c in cube] + [i for i in inputs])
|
|
assert is_sat == unsat
|
|
core = self.min_cube_solver.unsat_core()
|
|
assert core
|
|
return [c for c in core if c in set(cube)]
|
|
|
|
# push a goal on a heap
|
|
def push_heap(self, goal):
|
|
heapq.heappush(self.goals, (goal.level, goal))
|
|
|
|
# A state s0 and level f0 such that
|
|
# not(s0) is f0-1 inductive
|
|
def ic3_blocked(self, s0, f0):
|
|
self.push_heap(Goal(self.next(s0), None, f0))
|
|
while self.goals:
|
|
f, g = heapq.heappop(self.goals)
|
|
sys.stdout.write("%d." % f)
|
|
sys.stdout.flush()
|
|
# Not(g.cube) is f-1 invariant
|
|
if f == 0:
|
|
print("")
|
|
return g
|
|
cube, f, is_sat = self.is_inductive(f, g.cube)
|
|
if is_sat == unsat:
|
|
self.block_cube(f, self.prev(cube))
|
|
if f < f0:
|
|
self.push_heap(Goal(g.cube, g.parent, f + 1))
|
|
elif is_sat == sat:
|
|
self.push_heap(Goal(cube, g, f - 1))
|
|
self.push_heap(g)
|
|
else:
|
|
return is_sat
|
|
print("")
|
|
return None
|
|
|
|
# Rudimentary generalization:
|
|
# If the cube is already unsat with respect to transition relation
|
|
# extract a core (not necessarily minimal)
|
|
# otherwise, just return the cube.
|
|
def generalize(self, cube, f):
|
|
s = self.states[f - 1].solver
|
|
if unsat == s.check(cube):
|
|
core = s.unsat_core()
|
|
if not check_disjoint(self.init, self.prev(And(core))):
|
|
return core, f
|
|
return cube, f
|
|
|
|
# Check if the negation of cube is inductive at level f
|
|
def is_inductive(self, f, cube):
|
|
s = self.states[f - 1].solver
|
|
s.push()
|
|
s.add(self.prev(Not(And(cube))))
|
|
is_sat = s.check(cube)
|
|
if is_sat == sat:
|
|
m = s.model()
|
|
s.pop()
|
|
if is_sat == sat:
|
|
cube = self.next(self.minimize_cube(self.project0(m), self.projectI(m), self.projectN(m)))
|
|
elif is_sat == unsat:
|
|
cube, f = self.generalize(cube, f)
|
|
return cube, f, is_sat
|
|
|
|
def run(self):
|
|
if not check_disjoint(self.init, self.bad):
|
|
return "goal is reached in initial state"
|
|
level = 0
|
|
while True:
|
|
inv = self.is_valid()
|
|
if inv is not None:
|
|
return inv
|
|
is_sat, cube = self.unfold()
|
|
if is_sat == unsat:
|
|
level += 1
|
|
print("Unfold %d" % level)
|
|
sys.stdout.flush()
|
|
self.add_solver()
|
|
elif is_sat == sat:
|
|
cex = self.ic3_blocked(cube, level)
|
|
if cex is not None:
|
|
return cex
|
|
else:
|
|
return is_sat
|
|
|
|
def test(file):
|
|
h2t = Horn2Transitions()
|
|
h2t.parse(file)
|
|
mp = MiniIC3(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.inputs, h2t.xns)
|
|
result = mp.run()
|
|
if isinstance(result, Goal):
|
|
g = result
|
|
print("Trace")
|
|
while g:
|
|
print(g.level, g.cube)
|
|
g = g.parent
|
|
return
|
|
if isinstance(result, ExprRef):
|
|
print("Invariant:\n%s " % result)
|
|
return
|
|
print(result)
|
|
|
|
test("data/horn1.smt2")
|
|
test("data/horn2.smt2")
|
|
test("data/horn3.smt2")
|
|
test("data/horn4.smt2")
|
|
test("data/horn5.smt2")
|
|
# test("data/horn6.smt2") # takes long time to finish
|