mirror of
https://github.com/Z3Prover/z3
synced 2025-04-04 16:44:07 +00:00
79 lines
2.3 KiB
Python
79 lines
2.3 KiB
Python
# Copyright Microsoft Research 2016
|
|
# The following script finds sequences of length n-1 of
|
|
# integers 0,..,n-1 such that the difference of the n-1
|
|
# adjacent entries fall in the range 0,..,n-1
|
|
# This is known as the "The All-Interval Series Problem"
|
|
# See http://www.csplib.org/Problems/prob007/
|
|
from __future__ import print_function
|
|
from z3 import *
|
|
import time
|
|
|
|
set_option("sat.gc.burst", False) # disable GC at every search. It is wasteful for these small queries.
|
|
|
|
def diff_at_j_is_i(xs, j, i):
|
|
assert(0 <= j and j + 1 < len(xs))
|
|
assert(1 <= i and i < len(xs))
|
|
return Or([ And(xs[j][k], xs[j+1][k-i]) for k in range(i,len(xs))] +
|
|
[ And(xs[j][k], xs[j+1][k+i]) for k in range(0,len(xs)-i)])
|
|
|
|
|
|
def ais(n):
|
|
xij = [ [ Bool("x_%d_%d" % (i,j)) for j in range(n)] for i in range(n) ]
|
|
s = SolverFor("QF_FD")
|
|
# Optionally replace by (slower) default solver if using
|
|
# more then just finite domains (Booleans, Bit-vectors, enumeration types
|
|
# and bounded integers)
|
|
# s = Solver()
|
|
for i in range(n):
|
|
s.add(AtMost(xij[i] + [1]))
|
|
s.add(Or(xij[i]))
|
|
for j in range(n):
|
|
xi = [ xij[i][j] for i in range(n) ]
|
|
s.add(AtMost(xi + [1]))
|
|
s.add(Or(xi))
|
|
dji = [ [ diff_at_j_is_i(xij, j, i + 1) for i in range(n-1)] for j in range(n-1) ]
|
|
for j in range(n-1):
|
|
s.add(AtMost(dji[j] + [1]))
|
|
s.add(Or(dji[j]))
|
|
for i in range(n-1):
|
|
dj = [dji[j][i] for j in range(n-1)]
|
|
s.add(AtMost(dj + [1]))
|
|
s.add(Or(dj))
|
|
return s, xij
|
|
|
|
def process_model(s, xij, n):
|
|
# x_ij integer i is at position j
|
|
# d_ij difference between integer at position j, j+1 is i
|
|
# sum_j d_ij = 1 i = 1,...,n-1
|
|
# sum_j x_ij = 1
|
|
# sum_i x_ij = 1
|
|
m = s.model()
|
|
block = []
|
|
values = []
|
|
for i in range(n):
|
|
k = -1
|
|
for j in range(n):
|
|
if is_true(m.eval(xij[i][j])):
|
|
assert(k == -1)
|
|
block += [xij[i][j]]
|
|
k = j
|
|
values += [k]
|
|
print(values)
|
|
sys.stdout.flush()
|
|
return block
|
|
|
|
def all_models(n):
|
|
count = 0
|
|
s, xij = ais(n)
|
|
start = time.time()
|
|
while sat == s.check():
|
|
block = process_model(s, xij, n)
|
|
s.add(Not(And(block)))
|
|
count += 1
|
|
print(s.statistics())
|
|
print(time.time() - start)
|
|
print(count)
|
|
|
|
set_option(verbose=1)
|
|
all_models(12)
|