/*++ Copyright (c) 2011 Microsoft Corporation Module Name: pdr_generalizers.cpp Abstract: Generalizers of satisfiable states and unsat cores. Author: Nikolaj Bjorner (nbjorner) 2011-11-20. Revision History: --*/ #include "pdr_context.h" #include "pdr_farkas_learner.h" #include "pdr_interpolant_provider.h" #include "pdr_generalizers.h" #include "expr_abstract.h" #include "var_subst.h" namespace pdr { // // main propositional induction generalizer. // drop literals one by one from the core and check if the core is still inductive. // void core_bool_inductive_generalizer::operator()(model_node& n, expr_ref_vector& core, bool& uses_level) { if (core.size() <= 1) { return; } ast_manager& m = core.get_manager(); TRACE("pdr", for (unsigned i = 0; i < core.size(); ++i) { tout << mk_pp(core[i].get(), m) << "\n"; }); unsigned num_failures = 0, i = 0, old_core_size = core.size(); ptr_vector processed; while (i < core.size() && 1 < core.size() && (!m_failure_limit || num_failures <= m_failure_limit)) { expr_ref lit(m); lit = core[i].get(); core[i] = m.mk_true(); if (n.pt().check_inductive(n.level(), core, uses_level)) { num_failures = 0; for (i = 0; i < core.size() && processed.contains(core[i].get()); ++i); } else { core[i] = lit; processed.push_back(lit); ++num_failures; ++i; } } IF_VERBOSE(2, verbose_stream() << "old size: " << old_core_size << " new size: " << core.size() << "\n";); TRACE("pdr", tout << "old size: " << old_core_size << " new size: " << core.size() << "\n";); } void core_multi_generalizer::operator()(model_node& n, expr_ref_vector& core, bool& uses_level) { UNREACHABLE(); } /** \brief Find minimal cores. Apply a simple heuristic: find a minimal core, then find minimal cores that exclude at least one literal from each of the literals in the minimal cores. */ void core_multi_generalizer::operator()(model_node& n, expr_ref_vector const& core, bool uses_level, cores& new_cores) { ast_manager& m = core.get_manager(); expr_ref_vector old_core(m), core0(core); bool uses_level1 = uses_level; m_gen(n, core0, uses_level1); new_cores.push_back(std::make_pair(core0, uses_level1)); obj_hashtable core_exprs, core1_exprs; datalog::set_union(core_exprs, core0); for (unsigned i = 0; i < old_core.size(); ++i) { expr* lit = old_core[i].get(); if (core_exprs.contains(lit)) { expr_ref_vector core1(old_core); core1[i] = core1.back(); core1.pop_back(); uses_level1 = uses_level; m_gen(n, core1, uses_level1); SASSERT(core1.size() <= old_core.size()); if (core1.size() < old_core.size()) { new_cores.push_back(std::make_pair(core1, uses_level1)); core1_exprs.reset(); datalog::set_union(core1_exprs, core1); datalog::set_intersection(core_exprs, core1_exprs); } } } } // // for each disjunct of core: // weaken predecessor. // core_farkas_generalizer::core_farkas_generalizer(context& ctx, ast_manager& m, smt_params& p): core_generalizer(ctx), m_farkas_learner(p, m) {} void core_farkas_generalizer::operator()(model_node& n, expr_ref_vector& core, bool& uses_level) { ast_manager& m = n.pt().get_manager(); manager& pm = n.pt().get_pdr_manager(); if (core.empty()) return; expr_ref A(m), B(pm.mk_and(core)), C(m); expr_ref_vector Bs(m); pm.get_or(B, Bs); A = n.pt().get_propagation_formula(m_ctx.get_pred_transformers(), n.level()); bool change = false; for (unsigned i = 0; i < Bs.size(); ++i) { expr_ref_vector lemmas(m); C = Bs[i].get(); if (m_farkas_learner.get_lemma_guesses(A, B, lemmas)) { TRACE("pdr", tout << "Old core:\n" << mk_pp(B, m) << "\n"; tout << "New core:\n" << mk_pp(pm.mk_and(lemmas), m) << "\n";); Bs[i] = pm.mk_and(lemmas); change = true; } } if (change) { C = pm.mk_or(Bs); TRACE("pdr", tout << "prop:\n" << mk_pp(A,m) << "\ngen:" << mk_pp(B, m) << "\nto: " << mk_pp(C, m) << "\n";); core.reset(); datalog::flatten_and(C, core); uses_level = true; } } void core_farkas_generalizer::collect_statistics(statistics& st) const { m_farkas_learner.collect_statistics(st); } /** < F, phi, i + 1 > / \ < G, psi, i > < H, theta, i > core Given: 1. psi => core 2. Gi => not core 3. phi & psi & theta => F_{i+1} Then, by weakening 2: Gi => (F_{i+1} => not (phi & core & theta)) Find interpolant I, such that Gi => I, I => (F_{i+1} => not (phi & core' & theta')) where core => core', theta => theta' This implementation checks if Gi => (F_{i+1} => not (phi & theta)) */ void core_interpolant_generalizer::operator()(model_node& n, expr_ref_vector& core, bool& uses_level) { if (!n.parent()) { return; } manager& pm = n.pt().get_pdr_manager(); ast_manager& m = n.pt().get_manager(); model_node& p = *n.parent(); // find index of node into parent. unsigned index = 0; for (; index < p.children().size() && (&n != p.children()[index]); ++index); SASSERT(index < p.children().size()); expr_ref G(m), F(m), r(m), B(m), I(m), cube(m); expr_ref_vector fmls(m); F = p.pt().get_formulas(p.level(), true); G = n.pt().get_formulas(n.level(), true); pm.formula_n2o(index, false, G); // get formulas from siblings. for (unsigned i = 0; i < p.children().size(); ++i) { if (i != index) { pm.formula_n2o(p.children()[i]->state(), r, i, true); fmls.push_back(r); } } fmls.push_back(F); fmls.push_back(p.state()); B = pm.mk_and(fmls); // when G & B is unsat, find I such that G => I, I => not B lbool res = pm.get_interpolator().get_interpolant(G, B, I); TRACE("pdr", tout << "Interpolating:\n" << mk_pp(G, m) << "\n" << mk_pp(B, m) << "\n"; if (res == l_true) tout << mk_pp(I, m) << "\n"; else tout << "failed\n";); if(res == l_true) { pm.formula_o2n(I, cube, index, true); TRACE("pdr", tout << "After renaming: " << mk_pp(cube, m) << "\n";); core.reset(); datalog::flatten_and(cube, core); uses_level = true; } } // // < F, phi, i + 1> // | // < G, psi, i > // // where: // // p(x) <- F(x,y,p,q) // q(x) <- G(x,y) // // Hyp: // Q_k(x) => phi(x) j <= k <= i // Q_k(x) => R_k(x) j <= k <= i + 1 // Q_k(x) <=> Trans(Q_{k-1}) j < k <= i + 1 // Conclusion: // Q_{i+1}(x) => phi(x) // class core_induction_generalizer::imp { context& m_ctx; manager& pm; ast_manager& m; // // Create predicate Q_level // func_decl_ref mk_pred(unsigned level, func_decl* f) { func_decl_ref result(m); std::ostringstream name; name << f->get_name() << "_" << level; symbol sname(name.str().c_str()); result = m.mk_func_decl(sname, f->get_arity(), f->get_domain(), f->get_range()); return result; } // // Create formula exists y . z . F[Q_{level-1}, x, y, z] // expr_ref mk_transition_rule( expr_ref_vector const& reps, unsigned level, datalog::rule const& rule) { expr_ref_vector conj(m), sub(m); expr_ref result(m); ptr_vector sorts; svector names; unsigned ut_size = rule.get_uninterpreted_tail_size(); unsigned t_size = rule.get_tail_size(); if (0 == level && 0 < ut_size) { result = m.mk_false(); return result; } app* atom = rule.get_head(); SASSERT(atom->get_num_args() == reps.size()); for (unsigned i = 0; i < reps.size(); ++i) { expr* arg = atom->get_arg(i); if (is_var(arg)) { unsigned idx = to_var(arg)->get_idx(); if (idx >= sub.size()) sub.resize(idx+1); if (sub[idx].get()) { conj.push_back(m.mk_eq(sub[idx].get(), reps[i])); } else { sub[idx] = reps[i]; } } else { conj.push_back(m.mk_eq(arg, reps[i])); } } for (unsigned i = 0; 0 < level && i < ut_size; i++) { app* atom = rule.get_tail(i); func_decl* head = atom->get_decl(); func_decl_ref fn = mk_pred(level-1, head); conj.push_back(m.mk_app(fn, atom->get_num_args(), atom->get_args())); } for (unsigned i = ut_size; i < t_size; i++) { conj.push_back(rule.get_tail(i)); } result = pm.mk_and(conj); if (!sub.empty()) { expr_ref tmp = result; var_subst(m, false)(tmp, sub.size(), sub.c_ptr(), result); } get_free_vars(result, sorts); for (unsigned i = 0; i < sorts.size(); ++i) { if (!sorts[i]) { sorts[i] = m.mk_bool_sort(); } names.push_back(symbol(sorts.size() - i - 1)); } if (!sorts.empty()) { sorts.reverse(); result = m.mk_exists(sorts.size(), sorts.c_ptr(), names.c_ptr(), result); } return result; } expr_ref bind_head(expr_ref_vector const& reps, expr* fml) { expr_ref result(m); expr_abstract(m, 0, reps.size(), reps.c_ptr(), fml, result); ptr_vector sorts; svector names; unsigned sz = reps.size(); for (unsigned i = 0; i < sz; ++i) { sorts.push_back(m.get_sort(reps[sz-i-1])); names.push_back(symbol(sz-i-1)); } if (sz > 0) { result = m.mk_forall(sorts.size(), sorts.c_ptr(), names.c_ptr(), result); } return result; } expr_ref_vector mk_reps(pred_transformer& pt) { expr_ref_vector reps(m); expr_ref rep(m); for (unsigned i = 0; i < pt.head()->get_arity(); ++i) { rep = m.mk_const(pm.o2n(pt.sig(i), 0)); reps.push_back(rep); } return reps; } // // extract transition axiom: // // forall x . p_lvl(x) <=> exists y z . F[p_{lvl-1}(y), q_{lvl-1}(z), x] // expr_ref mk_transition_axiom(pred_transformer& pt, unsigned level) { expr_ref fml(m.mk_false(), m), tr(m); expr_ref_vector reps = mk_reps(pt); ptr_vector const& rules = pt.rules(); for (unsigned i = 0; i < rules.size(); ++i) { tr = mk_transition_rule(reps, level, *rules[i]); fml = (i == 0)?tr.get():m.mk_or(fml, tr); } func_decl_ref fn = mk_pred(level, pt.head()); fml = m.mk_iff(m.mk_app(fn, reps.size(), reps.c_ptr()), fml); fml = bind_head(reps, fml); return fml; } // // Create implication: // Q_level(x) => phi(x) // expr_ref mk_predicate_property(unsigned level, pred_transformer& pt, expr* phi) { expr_ref_vector reps = mk_reps(pt); func_decl_ref fn = mk_pred(level, pt.head()); expr_ref fml(m); fml = m.mk_implies(m.mk_app(fn, reps.size(), reps.c_ptr()), phi); fml = bind_head(reps, fml); return fml; } public: imp(context& ctx): m_ctx(ctx), pm(ctx.get_pdr_manager()), m(ctx.get_manager()) {} // // not exists y . F(x,y) // expr_ref mk_blocked_transition(pred_transformer& pt, unsigned level) { SASSERT(level > 0); expr_ref fml(m.mk_true(), m); expr_ref_vector reps = mk_reps(pt), fmls(m); ptr_vector const& rules = pt.rules(); for (unsigned i = 0; i < rules.size(); ++i) { fmls.push_back(m.mk_not(mk_transition_rule(reps, level, *rules[i]))); } fml = pm.mk_and(fmls); TRACE("pdr", tout << mk_pp(fml, m) << "\n";); return fml; } expr_ref mk_induction_goal(pred_transformer& pt, unsigned level, unsigned depth) { SASSERT(level >= depth); expr_ref_vector conjs(m); ptr_vector pts; unsigned_vector levels; // negated goal expr_ref phi = mk_blocked_transition(pt, level); conjs.push_back(m.mk_not(mk_predicate_property(level, pt, phi))); pts.push_back(&pt); levels.push_back(level); // Add I.H. for (unsigned lvl = level-depth; lvl < level; ++lvl) { if (lvl > 0) { expr_ref psi = mk_blocked_transition(pt, lvl); conjs.push_back(mk_predicate_property(lvl, pt, psi)); pts.push_back(&pt); levels.push_back(lvl); } } // Transitions: for (unsigned qhead = 0; qhead < pts.size(); ++qhead) { pred_transformer& qt = *pts[qhead]; unsigned lvl = levels[qhead]; // Add transition definition and properties at level. conjs.push_back(mk_transition_axiom(qt, lvl)); conjs.push_back(mk_predicate_property(lvl, qt, qt.get_formulas(lvl, true))); // Enqueue additional hypotheses ptr_vector const& rules = qt.rules(); if (lvl + depth < level || lvl == 0) { continue; } for (unsigned i = 0; i < rules.size(); ++i) { datalog::rule& r = *rules[i]; unsigned ut_size = r.get_uninterpreted_tail_size(); for (unsigned j = 0; j < ut_size; ++j) { func_decl* f = r.get_tail(j)->get_decl(); pred_transformer* rt = m_ctx.get_pred_transformers().find(f); bool found = false; for (unsigned k = 0; !found && k < levels.size(); ++k) { found = (rt == pts[k] && levels[k] + 1 == lvl); } if (!found) { levels.push_back(lvl-1); pts.push_back(rt); } } } } expr_ref result = pm.mk_and(conjs); TRACE("pdr", tout << mk_pp(result, m) << "\n";); return result; } }; // // Instantiate Peano induction schema. // void core_induction_generalizer::operator()(model_node& n, expr_ref_vector& core, bool& uses_level) { model_node* p = n.parent(); if (p == 0) { return; } unsigned depth = 2; imp imp(m_ctx); ast_manager& m = core.get_manager(); expr_ref goal = imp.mk_induction_goal(p->pt(), p->level(), depth); smt::kernel ctx(m, m_ctx.get_fparams(), m_ctx.get_params()); ctx.assert_expr(goal); lbool r = ctx.check(); TRACE("pdr", tout << r << "\n"; for (unsigned i = 0; i < core.size(); ++i) { tout << mk_pp(core[i].get(), m) << "\n"; }); if (r == l_false) { core.reset(); expr_ref phi = imp.mk_blocked_transition(p->pt(), p->level()); core.push_back(m.mk_not(phi)); uses_level = true; } } };