/*++ Copyright (c) 2015 Microsoft Corporation Module Name: qsat.cpp Abstract: Quantifier Satisfiability Solver. Author: Nikolaj Bjorner (nbjorner) 2015-5-28 Revision History: Notes: --*/ #include "smt_kernel.h" #include "qe_mbp.h" #include "smt_params.h" #include "ast_util.h" #include "quant_hoist.h" #include "ast_pp.h" #include "model_v2_pp.h" #include "qsat.h" #include "expr_abstract.h" #include "qe.h" #include "label_rewriter.h" namespace qe { pred_abs::pred_abs(ast_manager& m): m(m), m_asms(m), m_trail(m), m_fmc(alloc(filter_model_converter, m)) { } filter_model_converter* pred_abs::fmc() { return m_fmc.get(); } void pred_abs::reset() { m_trail.reset(); dec_keys(m_pred2lit); dec_keys(m_lit2pred); dec_keys(m_asm2pred); dec_keys(m_pred2asm); m_lit2pred.reset(); m_pred2lit.reset(); m_asm2pred.reset(); m_pred2asm.reset(); m_elevel.reset(); m_asms.reset(); m_asms_lim.reset(); m_preds.reset(); } max_level pred_abs::compute_level(app* e) { unsigned sz0 = todo.size(); todo.push_back(e); while (sz0 != todo.size()) { app* a = to_app(todo.back()); if (m_elevel.contains(a)) { todo.pop_back(); continue; } max_level lvl, lvl0; bool has_new = false; if (m_flevel.find(a->get_decl(), lvl)) { lvl0.merge(lvl); } for (unsigned i = 0; i < a->get_num_args(); ++i) { app* arg = to_app(a->get_arg(i)); if (m_elevel.find(arg, lvl)) { lvl0.merge(lvl); } else { todo.push_back(arg); has_new = true; } } if (!has_new) { m_elevel.insert(a, lvl0); todo.pop_back(); } } return m_elevel.find(e); } void pred_abs::add_pred(app* p, app* lit) { m.inc_ref(p); m_pred2lit.insert(p, lit); add_lit(p, lit); } void pred_abs::add_lit(app* p, app* lit) { if (!m_lit2pred.contains(lit)) { m.inc_ref(lit); m_lit2pred.insert(lit, p); } } void pred_abs::add_asm(app* p, expr* assum) { SASSERT(!m_asm2pred.contains(assum)); m.inc_ref(p); m.inc_ref(assum); m_asm2pred.insert(assum, p); m_pred2asm.insert(p, assum); } void pred_abs::push() { m_asms_lim.push_back(m_asms.size()); } void pred_abs::pop(unsigned num_scopes) { unsigned l = m_asms_lim.size() - num_scopes; m_asms.resize(m_asms_lim[l]); m_asms_lim.shrink(l); } void pred_abs::insert(app* a, max_level const& lvl) { unsigned l = lvl.max(); if (l == UINT_MAX) l = 0; while (m_preds.size() <= l) { m_preds.push_back(app_ref_vector(m)); } m_preds[l].push_back(a); } bool pred_abs::is_predicate(app* a, unsigned l) { max_level lvl1; return m_flevel.find(a->get_decl(), lvl1) && lvl1.max() < l; } void pred_abs::get_assumptions(model* mdl, expr_ref_vector& asms) { unsigned level = m_asms_lim.size(); if (level > m_preds.size()) { level = m_preds.size(); } if (!mdl) { asms.append(m_asms); return; } if (level == 0) { return; } expr_ref val(m); for (unsigned j = 0; j < m_preds[level - 1].size(); ++j) { app* p = m_preds[level - 1][j].get(); TRACE("qe", tout << "process level: " << level - 1 << ": " << mk_pp(p, m) << "\n";); VERIFY(mdl->eval(p, val)); if (m.is_false(val)) { m_asms.push_back(m.mk_not(p)); } else { SASSERT(m.is_true(val)); m_asms.push_back(p); } } asms.append(m_asms); for (unsigned i = level + 1; i < m_preds.size(); i += 2) { for (unsigned j = 0; j < m_preds[i].size(); ++j) { app* p = m_preds[i][j].get(); max_level lvl = m_elevel.find(p); bool use = (lvl.m_fa == i && (lvl.m_ex == UINT_MAX || lvl.m_ex < level)) || (lvl.m_ex == i && (lvl.m_fa == UINT_MAX || lvl.m_fa < level)); if (use) { VERIFY(mdl->eval(p, val)); if (m.is_false(val)) { asms.push_back(m.mk_not(p)); } else { asms.push_back(p); } } } } TRACE("qe", tout << "level: " << level << "\n"; model_v2_pp(tout, *mdl); display(tout, asms);); } void pred_abs::set_expr_level(app* v, max_level const& lvl) { m_elevel.insert(v, lvl); } void pred_abs::set_decl_level(func_decl* f, max_level const& lvl) { m_flevel.insert(f, lvl); } void pred_abs::abstract_atoms(expr* fml, expr_ref_vector& defs) { max_level level; abstract_atoms(fml, level, defs); } /** \brief create propositional abstraction of formula by replacing atomic sub-formulas by fresh propositional variables, and adding definitions for each propositional formula on the side. Assumption is that the formula is quantifier-free. */ void pred_abs::abstract_atoms(expr* fml, max_level& level, expr_ref_vector& defs) { expr_mark mark; ptr_vector args; app_ref r(m), eq(m); app* p; unsigned sz0 = todo.size(); todo.push_back(fml); m_trail.push_back(fml); max_level l; while (sz0 != todo.size()) { app* a = to_app(todo.back()); todo.pop_back(); if (mark.is_marked(a)) { continue; } mark.mark(a); if (m_lit2pred.find(a, p)) { TRACE("qe", tout << mk_pp(a, m) << " " << mk_pp(p, m) << "\n";); level.merge(m_elevel.find(p)); continue; } if (is_uninterp_const(a) && m.is_bool(a)) { l = m_elevel.find(a); level.merge(l); if (!m_pred2lit.contains(a)) { add_pred(a, a); insert(a, l); } continue; } unsigned sz = a->get_num_args(); for (unsigned i = 0; i < sz; ++i) { expr* f = a->get_arg(i); if (!mark.is_marked(f)) { todo.push_back(f); } } bool is_boolop = (a->get_family_id() == m.get_basic_family_id()) && (!m.is_eq(a) || m.is_bool(a->get_arg(0))) && (!m.is_distinct(a) || m.is_bool(a->get_arg(0))); if (!is_boolop && m.is_bool(a)) { TRACE("qe", tout << mk_pp(a, m) << "\n";); r = fresh_bool("p"); max_level l = compute_level(a); add_pred(r, a); m_elevel.insert(r, l); eq = m.mk_eq(r, a); defs.push_back(eq); if (!is_predicate(a, l.max())) { insert(r, l); } level.merge(l); } } } app_ref pred_abs::fresh_bool(char const* name) { app_ref r(m.mk_fresh_const(name, m.mk_bool_sort()), m); m_fmc->insert(r->get_decl()); return r; } // optional pass to replace atoms by predicates // so that SMT core works on propositional // abstraction only. expr_ref pred_abs::mk_abstract(expr* fml) { expr_ref_vector trail(m), args(m); obj_map cache; app* b; expr_ref r(m); unsigned sz0 = todo.size(); todo.push_back(fml); while (sz0 != todo.size()) { app* a = to_app(todo.back()); if (cache.contains(a)) { todo.pop_back(); continue; } if (m_lit2pred.find(a, b)) { cache.insert(a, b); todo.pop_back(); continue; } unsigned sz = a->get_num_args(); bool diff = false; args.reset(); for (unsigned i = 0; i < sz; ++i) { expr* f = a->get_arg(i), *f1; if (cache.find(f, f1)) { args.push_back(f1); diff |= f != f1; } else { todo.push_back(f); } } if (sz == args.size()) { if (diff) { r = m.mk_app(a->get_decl(), sz, args.c_ptr()); trail.push_back(r); } else { r = a; } cache.insert(a, r); todo.pop_back(); } } return expr_ref(cache.find(fml), m); } expr_ref pred_abs::mk_assumption_literal(expr* a, model* mdl, max_level const& lvl, expr_ref_vector& defs) { expr_ref A(m); A = pred2asm(a); a = A; app_ref p(m); expr_ref q(m), fml(m); app *b; expr *c, *d; max_level lvl2; TRACE("qe", tout << mk_pp(a, m) << " " << lvl << "\n";); if (m_asm2pred.find(a, b)) { q = b; } else if (m.is_not(a, c) && m_asm2pred.find(c, b)) { q = m.mk_not(b); } else if (m_pred2asm.find(a, d)) { q = a; } else if (m.is_not(a, c) && m_pred2asm.find(c, d)) { q = a; } else { p = fresh_bool("def"); if (m.is_not(a, a)) { if (mdl) mdl->register_decl(p->get_decl(), m.mk_false()); q = m.mk_not(p); } else { if (mdl) mdl->register_decl(p->get_decl(), m.mk_true()); q = p; } m_elevel.insert(p, lvl); insert(p, lvl); fml = a; abstract_atoms(fml, lvl2, defs); fml = mk_abstract(fml); defs.push_back(m.mk_eq(p, fml)); add_asm(p, a); TRACE("qe", tout << mk_pp(a, m) << " |-> " << p << "\n";); } return q; } void pred_abs::mk_concrete(expr_ref_vector& fmls, obj_map const& map) { obj_map cache; expr_ref_vector trail(m); expr* p; app_ref r(m); ptr_vector args; unsigned sz0 = todo.size(); todo.append(fmls.size(), (expr*const*)fmls.c_ptr()); while (sz0 != todo.size()) { app* a = to_app(todo.back()); if (cache.contains(a)) { todo.pop_back(); continue; } if (map.find(a, p)) { cache.insert(a, p); todo.pop_back(); continue; } unsigned sz = a->get_num_args(); args.reset(); bool diff = false; for (unsigned i = 0; i < sz; ++i) { expr* f = a->get_arg(i), *f1; if (cache.find(f, f1)) { args.push_back(f1); diff |= f != f1; } else { todo.push_back(f); } } if (args.size() == sz) { if (diff) { r = m.mk_app(a->get_decl(), sz, args.c_ptr()); } else { r = to_app(a); } cache.insert(a, r); trail.push_back(r); todo.pop_back(); } } for (unsigned i = 0; i < fmls.size(); ++i) { fmls[i] = to_app(cache.find(fmls[i].get())); } } void pred_abs::pred2lit(expr_ref_vector& fmls) { mk_concrete(fmls, m_pred2lit); } expr_ref pred_abs::pred2asm(expr* fml) { expr_ref_vector fmls(m); fmls.push_back(fml); mk_concrete(fmls, m_pred2asm); return mk_and(fmls); } void pred_abs::collect_statistics(statistics& st) const { st.update("qsat num predicates", m_pred2lit.size()); } void pred_abs::display(std::ostream& out) const { out << "pred2lit:\n"; obj_map::iterator it = m_pred2lit.begin(), end = m_pred2lit.end(); for (; it != end; ++it) { out << mk_pp(it->m_key, m) << " |-> " << mk_pp(it->m_value, m) << "\n"; } for (unsigned i = 0; i < m_preds.size(); ++i) { out << "level " << i << "\n"; for (unsigned j = 0; j < m_preds[i].size(); ++j) { app* p = m_preds[i][j]; expr* e; if (m_pred2lit.find(p, e)) { out << mk_pp(p, m) << " := " << mk_pp(e, m) << "\n"; } else { out << mk_pp(p, m) << "\n"; } } } } void pred_abs::display(std::ostream& out, expr_ref_vector const& asms) const { max_level lvl; for (unsigned i = 0; i < asms.size(); ++i) { expr* e = asms[i]; bool is_not = m.is_not(asms[i], e); out << mk_pp(asms[i], m); if (m_elevel.find(e, lvl)) { lvl.display(out << " - "); } if (m_pred2lit.find(e, e)) { out << " : " << (is_not?"!":"") << mk_pp(e, m); } out << "\n"; } } void pred_abs::get_free_vars(expr* fml, app_ref_vector& vars) { ast_fast_mark1 mark; unsigned sz0 = todo.size(); todo.push_back(fml); while (sz0 != todo.size()) { expr* e = todo.back(); todo.pop_back(); if (mark.is_marked(e) || is_var(e)) { continue; } mark.mark(e); if (is_quantifier(e)) { todo.push_back(to_quantifier(e)->get_expr()); continue; } SASSERT(is_app(e)); app* a = to_app(e); if (is_uninterp_const(a)) { // TBD generalize for uninterpreted functions. vars.push_back(a); } for (unsigned i = 0; i < a->get_num_args(); ++i) { todo.push_back(a->get_arg(i)); } } } class kernel { ast_manager& m; smt_params m_smtp; smt::kernel m_kernel; public: kernel(ast_manager& m): m(m), m_kernel(m, m_smtp) { m_smtp.m_model = true; m_smtp.m_relevancy_lvl = 0; m_smtp.m_case_split_strategy = CS_ACTIVITY_WITH_CACHE; } smt::kernel& k() { return m_kernel; } smt::kernel const& k() const { return m_kernel; } void assert_expr(expr* e) { m_kernel.assert_expr(e); } void get_core(expr_ref_vector& core) { unsigned sz = m_kernel.get_unsat_core_size(); core.reset(); for (unsigned i = 0; i < sz; ++i) { core.push_back(m_kernel.get_unsat_core_expr(i)); } TRACE("qe", tout << "core: " << core << "\n"; m_kernel.display(tout); tout << "\n"; ); } }; class qsat : public tactic { struct stats { unsigned m_num_rounds; stats() { reset(); } void reset() { memset(this, 0, sizeof(*this)); } }; ast_manager& m; params_ref m_params; stats m_stats; statistics m_st; qe::mbp m_mbp; kernel m_fa; kernel m_ex; pred_abs m_pred_abs; expr_ref_vector m_answer; expr_ref_vector m_asms; vector m_vars; // variables from alternating prefixes. unsigned m_level; model_ref m_model; bool m_qelim; // perform quantifier elimination bool m_force_elim; // force elimination of variables during projection. app_ref_vector m_avars; // variables to project app_ref_vector m_free_vars; /** \brief check alternating satisfiability. Even levels are existential, odd levels are universal. */ lbool check_sat() { while (true) { ++m_stats.m_num_rounds; check_cancel(); expr_ref_vector asms(m_asms); m_pred_abs.get_assumptions(m_model.get(), asms); TRACE("qe", tout << asms << "\n";); smt::kernel& k = get_kernel(m_level).k(); lbool res = k.check(asms); switch (res) { case l_true: k.get_model(m_model); SASSERT(validate_model(asms)); TRACE("qe", k.display(tout); display(tout << "\n", *m_model.get()); display(tout, asms); ); push(); break; case l_false: switch (m_level) { case 0: return l_false; case 1: if (!m_qelim) return l_true; if (m_model.get()) { project_qe(asms); } else { pop(1); } break; default: if (m_model.get()) { project(asms); } else { pop(1); } break; } break; case l_undef: return res; } } return l_undef; } kernel& get_kernel(unsigned j) { if (is_exists(j)) { return m_ex; } else { return m_fa; } } bool is_exists(unsigned level) const { return (level % 2) == 0; } bool is_forall(unsigned level) const { return is_exists(level+1); } void push() { m_level++; m_pred_abs.push(); } void pop(unsigned num_scopes) { m_model.reset(); SASSERT(num_scopes <= m_level); m_pred_abs.pop(num_scopes); m_level -= num_scopes; } void reset() { m_st.reset(); m_fa.k().collect_statistics(m_st); m_ex.k().collect_statistics(m_st); m_pred_abs.collect_statistics(m_st); m_level = 0; m_answer.reset(); m_asms.reset(); m_pred_abs.reset(); m_vars.reset(); m_model = 0; m_fa.k().reset(); m_ex.k().reset(); m_free_vars.reset(); } /** \brief create a quantifier prefix formula. */ void hoist(expr_ref& fml) { proof_ref pr(m); label_rewriter rw(m); rw.remove_labels(fml, pr); quantifier_hoister hoist(m); app_ref_vector vars(m); bool is_forall = false; m_pred_abs.get_free_vars(fml, vars); m_vars.push_back(vars); vars.reset(); if (m_qelim) { is_forall = true; hoist.pull_quantifier(is_forall, fml, vars); m_vars.push_back(vars); } else { hoist.pull_quantifier(is_forall, fml, vars); m_vars.back().append(vars); } do { is_forall = !is_forall; vars.reset(); hoist.pull_quantifier(is_forall, fml, vars); m_vars.push_back(vars); } while (!vars.empty()); SASSERT(m_vars.back().empty()); initialize_levels(); TRACE("qe", tout << fml << "\n";); } void initialize_levels() { // initialize levels. for (unsigned i = 0; i < m_vars.size(); ++i) { max_level lvl; if (is_exists(i)) { lvl.m_ex = i; } else { lvl.m_fa = i; } for (unsigned j = 0; j < m_vars[i].size(); ++j) { m_pred_abs.set_expr_level(m_vars[i][j].get(), lvl); } } } void get_core(expr_ref_vector& core, unsigned level) { get_kernel(level).get_core(core); m_pred_abs.pred2lit(core); } void check_cancel() { if (m.canceled()) { throw tactic_exception(m.limit().get_cancel_msg()); } } void display(std::ostream& out) const { out << "level: " << m_level << "\n"; for (unsigned i = 0; i < m_vars.size(); ++i) { for (unsigned j = 0; j < m_vars[i].size(); ++j) { expr* v = m_vars[i][j]; out << mk_pp(v, m) << " "; } out << "\n"; } m_pred_abs.display(out); } void display(std::ostream& out, model& model) const { display(out); model_v2_pp(out, model); } void display(std::ostream& out, expr_ref_vector const& asms) const { m_pred_abs.display(out, asms); } void add_assumption(expr* fml) { expr_ref eq(m); app_ref b = m_pred_abs.fresh_bool("b"); m_asms.push_back(b); eq = m.mk_eq(b, fml); m_ex.assert_expr(eq); m_fa.assert_expr(eq); m_pred_abs.add_pred(b, to_app(fml)); max_level lvl; m_pred_abs.set_expr_level(b, lvl); } void project_qe(expr_ref_vector& core) { SASSERT(m_level == 1); expr_ref fml(m); model& mdl = *m_model.get(); get_core(core, m_level); SASSERT(validate_core(core)); get_vars(m_level); m_mbp(m_force_elim, m_avars, mdl, core); fml = negate_core(core); add_assumption(fml); m_answer.push_back(fml); m_free_vars.append(m_avars); pop(1); } void project(expr_ref_vector& core) { get_core(core, m_level); TRACE("qe", display(tout); display(tout << "core\n", core);); SASSERT(validate_core(core)); SASSERT(m_level >= 2); expr_ref fml(m); expr_ref_vector defs(m), core_save(m); max_level level; model& mdl = *m_model.get(); get_vars(m_level-1); SASSERT(validate_project(mdl, core)); m_mbp(m_force_elim, m_avars, mdl, core); m_free_vars.append(m_avars); fml = negate_core(core); unsigned num_scopes = 0; m_pred_abs.abstract_atoms(fml, level, defs); m_ex.assert_expr(mk_and(defs)); m_fa.assert_expr(mk_and(defs)); if (level.max() == UINT_MAX) { num_scopes = 2*(m_level/2); } else if (m_qelim && !m_force_elim) { num_scopes = 2; } else { SASSERT(level.max() + 2 <= m_level); num_scopes = m_level - level.max(); SASSERT(num_scopes >= 2); if ((num_scopes % 2) != 0) { --num_scopes; } } pop(num_scopes); TRACE("qe", tout << "backtrack: " << num_scopes << " new level: " << m_level << "\nproject:\n" << core << "\n|->\n" << fml << "\n";); if (m_level == 0 && m_qelim) { add_assumption(fml); } else { fml = m_pred_abs.mk_abstract(fml); get_kernel(m_level).assert_expr(fml); } } void get_vars(unsigned level) { m_avars.reset(); for (unsigned i = level; i < m_vars.size(); ++i) { m_avars.append(m_vars[i]); } } expr_ref negate_core(expr_ref_vector& core) { return ::push_not(::mk_and(core)); } expr_ref elim_rec(expr* fml) { expr_ref tmp(m); expr_ref_vector trail(m); obj_map visited; ptr_vector todo; trail.push_back(fml); todo.push_back(fml); expr* e = 0, *r = 0; while (!todo.empty()) { check_cancel(); e = todo.back(); if (visited.contains(e)) { todo.pop_back(); continue; } switch(e->get_kind()) { case AST_APP: { app* a = to_app(e); expr_ref_vector args(m); unsigned num_args = a->get_num_args(); bool all_visited = true; for (unsigned i = 0; i < num_args; ++i) { if (visited.find(a->get_arg(i), r)) { args.push_back(r); } else { todo.push_back(a->get_arg(i)); all_visited = false; } } if (all_visited) { r = m.mk_app(a->get_decl(), args.size(), args.c_ptr()); todo.pop_back(); trail.push_back(r); visited.insert(e, r); } break; } case AST_QUANTIFIER: { app_ref_vector vars(m); quantifier* q = to_quantifier(e); bool is_fa = q->is_forall(); tmp = q->get_expr(); extract_vars(q, tmp, vars); TRACE("qe", tout << vars << " " << mk_pp(q, m) << " " << tmp << "\n";); tmp = elim_rec(tmp); if (is_fa) { tmp = ::push_not(tmp); } tmp = elim(vars, tmp); if (is_fa) { tmp = ::push_not(tmp); } trail.push_back(tmp); visited.insert(e, tmp); todo.pop_back(); break; } default: UNREACHABLE(); break; } } VERIFY (visited.find(fml, e)); return expr_ref(e, m); } expr_ref elim(app_ref_vector const& vars, expr* _fml) { expr_ref fml(_fml, m); reset(); m_vars.push_back(app_ref_vector(m)); m_vars.push_back(vars); initialize_levels(); fml = push_not(fml); TRACE("qe", tout << vars << " " << fml << "\n";); expr_ref_vector defs(m); m_pred_abs.abstract_atoms(fml, defs); fml = m_pred_abs.mk_abstract(fml); m_ex.assert_expr(mk_and(defs)); m_fa.assert_expr(mk_and(defs)); m_ex.assert_expr(fml); m_fa.assert_expr(m.mk_not(fml)); TRACE("qe", tout << "ex: " << fml << "\n";); lbool is_sat = check_sat(); fml = ::mk_and(m_answer); TRACE("qe", tout << "ans: " << fml << "\n"; tout << "Free vars: " << m_free_vars << "\n";); if (is_sat == l_false) { obj_hashtable vars; for (unsigned i = 0; i < m_free_vars.size(); ++i) { app* v = m_free_vars[i].get(); if (vars.contains(v)) { m_free_vars[i] = m_free_vars.back(); m_free_vars.pop_back(); --i; } else { vars.insert(v); } } fml = mk_exists(m, m_free_vars.size(), m_free_vars.c_ptr(), fml); return fml; } else { return expr_ref(_fml, m); } } bool validate_core(expr_ref_vector const& core) { TRACE("qe", tout << "Validate core\n";); smt::kernel& k = get_kernel(m_level).k(); expr_ref_vector fmls(m); fmls.append(core.size(), core.c_ptr()); fmls.append(k.size(), k.get_formulas()); return check_fmls(fmls); } bool check_fmls(expr_ref_vector const& fmls) { smt_params p; smt::kernel solver(m, p); for (unsigned i = 0; i < fmls.size(); ++i) { solver.assert_expr(fmls[i]); } lbool is_sat = solver.check(); CTRACE("qe", is_sat != l_false, tout << fmls << "\nare not unsat\n";); return (is_sat == l_false); } bool validate_model(expr_ref_vector const& asms) { TRACE("qe", tout << "Validate model\n";); smt::kernel& k = get_kernel(m_level).k(); return validate_model(*m_model, asms.size(), asms.c_ptr()) && validate_model(*m_model, k.size(), k.get_formulas()); } bool validate_model(model& mdl, unsigned sz, expr* const* fmls) { expr_ref val(m); for (unsigned i = 0; i < sz; ++i) { if (!m_model->eval(fmls[i], val)) { TRACE("qe", tout << "Formula does not evaluate in model: " << mk_pp(fmls[i], m) << "\n";); return false; } if (!m.is_true(val)) { TRACE("qe", tout << mk_pp(fmls[i], m) << " evaluates to " << val << " in model\n";); return false; } } return true; } // validate the following: // proj is true in model. // core is true in model. // proj does not contain vars. // proj => exists vars . core // (core[model(vars)/vars] => proj) bool validate_project(model& mdl, expr_ref_vector const& core) { TRACE("qe", tout << "Validate projection\n";); if (!validate_model(mdl, core.size(), core.c_ptr())) return false; expr_ref_vector proj(core); app_ref_vector vars(m_avars); m_mbp(false, vars, mdl, proj); if (!vars.empty()) { TRACE("qe", tout << "Not validating partial projection\n";); return true; } if (!validate_model(mdl, proj.size(), proj.c_ptr())) { TRACE("qe", tout << "Projection is false in model\n";); return false; } for (unsigned i = 0; i < m_avars.size(); ++i) { contains_app cont(m, m_avars[i].get()); if (cont(proj)) { TRACE("qe", tout << "Projection contains free variable: " << mk_pp(m_avars[i].get(), m) << "\n";); return false; } } // // TBD: proj => exists vars . core, // e.g., extract and use realizer functions from mbp. // // (core[model(vars)/vars] => proj) expr_ref_vector fmls(m); fmls.append(core.size(), core.c_ptr()); for (unsigned i = 0; i < m_avars.size(); ++i) { expr_ref val(m); VERIFY(mdl.eval(m_avars[i].get(), val)); fmls.push_back(m.mk_eq(m_avars[i].get(), val)); } fmls.push_back(m.mk_not(mk_and(proj))); if (!check_fmls(fmls)) { TRACE("qe", tout << "implication check failed, could be due to turning != into >\n";); } return true; } public: qsat(ast_manager& m, params_ref const& p, bool qelim, bool force_elim): m(m), m_mbp(m), m_fa(m), m_ex(m), m_pred_abs(m), m_answer(m), m_asms(m), m_level(0), m_qelim(qelim), m_force_elim(force_elim), m_avars(m), m_free_vars(m) { reset(); } virtual ~qsat() { reset(); } void updt_params(params_ref const & p) { } void collect_param_descrs(param_descrs & r) { } void operator()(/* in */ goal_ref const & in, /* out */ goal_ref_buffer & result, /* out */ model_converter_ref & mc, /* out */ proof_converter_ref & pc, /* out */ expr_dependency_ref & core) { tactic_report report("qsat-tactic", *in); ptr_vector fmls; expr_ref_vector defs(m); expr_ref fml(m); mc = 0; pc = 0; core = 0; in->get_formulas(fmls); fml = mk_and(m, fmls.size(), fmls.c_ptr()); // for now: // fail if cores. (TBD) // fail if proofs. (TBD) if (!m_force_elim) { fml = elim_rec(fml); in->reset(); in->inc_depth(); in->assert_expr(fml); result.push_back(in.get()); return; } reset(); TRACE("qe", tout << fml << "\n";); if (m_qelim) { fml = push_not(fml); } hoist(fml); m_pred_abs.abstract_atoms(fml, defs); fml = m_pred_abs.mk_abstract(fml); m_ex.assert_expr(mk_and(defs)); m_fa.assert_expr(mk_and(defs)); m_ex.assert_expr(fml); m_fa.assert_expr(m.mk_not(fml)); TRACE("qe", tout << "ex: " << fml << "\n";); lbool is_sat = check_sat(); switch (is_sat) { case l_false: in->reset(); in->inc_depth(); if (m_qelim) { fml = ::mk_and(m_answer); in->assert_expr(fml); } else { in->assert_expr(m.mk_false()); } result.push_back(in.get()); break; case l_true: in->reset(); in->inc_depth(); result.push_back(in.get()); if (in->models_enabled()) { mc = model2model_converter(m_model.get()); mc = concat(m_pred_abs.fmc(), mc.get()); } break; case l_undef: result.push_back(in.get()); std::string s = m_ex.k().last_failure_as_string(); if (s == "ok") { s = m_fa.k().last_failure_as_string(); } throw tactic_exception(s.c_str()); } } void collect_statistics(statistics & st) const { st.copy(m_st); st.update("qsat num rounds", m_stats.m_num_rounds); m_pred_abs.collect_statistics(st); } void reset_statistics() { m_stats.reset(); m_fa.k().reset_statistics(); m_ex.k().reset_statistics(); } void cleanup() { reset(); } void set_logic(symbol const & l) { } void set_progress_callback(progress_callback * callback) { } tactic * translate(ast_manager & m) { return alloc(qsat, m, m_params, m_qelim, m_force_elim); } }; struct min_max_opt::imp { ast_manager& m; expr_ref_vector m_fmls; pred_abs m_pred_abs; qe::mbp m_mbp; kernel m_kernel; vector m_vars; imp(ast_manager& m): m(m), m_fmls(m), m_pred_abs(m), m_mbp(m), m_kernel(m) {} void add(expr* e) { m_fmls.push_back(e); } lbool check(svector const& is_max, app_ref_vector const& vars, app* t) { // Assume this is the only call to check. expr_ref_vector defs(m); app_ref_vector free_vars(m), vars1(m); expr_ref fml = mk_and(m_fmls); m_pred_abs.get_free_vars(fml, free_vars); m_pred_abs.abstract_atoms(fml, defs); fml = m_pred_abs.mk_abstract(fml); m_kernel.assert_expr(mk_and(defs)); m_kernel.assert_expr(fml); obj_hashtable var_set; for (unsigned i = 0; i < vars.size(); ++i) { var_set.insert(vars[i]); } for (unsigned i = 0; i < free_vars.size(); ++i) { app* v = free_vars[i].get(); if (!var_set.contains(v)) { vars1.push_back(v); } } bool is_m = is_max[0]; for (unsigned i = 0; i < vars.size(); ++i) { if (is_m != is_max[i]) { m_vars.push_back(vars1); vars1.reset(); is_m = is_max[i]; } vars1.push_back(vars[i]); } // TBD return l_undef; } }; min_max_opt::min_max_opt(ast_manager& m) { m_imp = alloc(imp, m); } min_max_opt::~min_max_opt() { dealloc(m_imp); } void min_max_opt::add(expr* e) { m_imp->add(e); } void min_max_opt::add(expr_ref_vector const& fmls) { for (unsigned i = 0; i < fmls.size(); ++i) { add(fmls[i]); } } lbool min_max_opt::check(svector const& is_max, app_ref_vector const& vars, app* t) { return m_imp->check(is_max, vars, t); } }; tactic * mk_qsat_tactic(ast_manager& m, params_ref const& p) { return alloc(qe::qsat, m, p, false, true); } tactic * mk_qe2_tactic(ast_manager& m, params_ref const& p) { return alloc(qe::qsat, m, p, true, true); } tactic * mk_qe_rec_tactic(ast_manager& m, params_ref const& p) { return alloc(qe::qsat, m, p, true, false); }