/*++ Copyright (c) 2011 Microsoft Corporation Module Name: poly_rewriter_def.h Abstract: Basic rewriting rules for Polynomials. Author: Leonardo (leonardo) 2011-04-08 Notes: --*/ #include"poly_rewriter.h" #include"ast_lt.h" #include"ast_ll_pp.h" #include"ast_smt2_pp.h" template char const * poly_rewriter::g_ste_blowup_msg = "sum of monomials blowup"; template void poly_rewriter::updt_params(params_ref const & p) { m_flat = p.get_bool(":flat", true); m_som = p.get_bool(":som", false); m_hoist_mul = p.get_bool(":hoist-mul", false); m_hoist_cmul = p.get_bool(":hoist-cmul", false); m_som_blowup = p.get_uint(":som-blowup", UINT_MAX); } template void poly_rewriter::get_param_descrs(param_descrs & r) { r.insert(":som", CPK_BOOL, "(default: false) put polynomials in som-of-monomials form."); r.insert(":som-blowup", CPK_UINT, "(default: infty) maximum number of monomials generated when putting a polynomial in sum-of-monomials normal form"); r.insert(":hoist-mul", CPK_BOOL, "(default: false) hoist multiplication over summation to minimize number of multiplications"); r.insert(":hoist-cmul", CPK_BOOL, "(default: false) hoist constant multiplication over summation to minimize number of multiplications"); } template expr * poly_rewriter::mk_add_app(unsigned num_args, expr * const * args) { switch (num_args) { case 0: return mk_numeral(numeral(0)); case 1: return args[0]; default: return m().mk_app(get_fid(), add_decl_kind(), num_args, args); } } // t = (^ x y) --> return x, and set k = y if k is an integer >= 1 // Otherwise return t and set k = 1 template expr * poly_rewriter::get_power_body(expr * t, rational & k) { if (!is_power(t)) { k = rational(1); return t; } if (is_numeral(to_app(t)->get_arg(1), k) && k.is_int() && k > rational(1)) { return to_app(t)->get_arg(0); } k = rational(1); return t; } template expr * poly_rewriter::mk_mul_app(unsigned num_args, expr * const * args) { switch (num_args) { case 0: return mk_numeral(numeral(1)); case 1: return args[0]; default: if (use_power()) { rational k_prev; expr * prev = get_power_body(args[0], k_prev); rational k; ptr_buffer new_args; #define PUSH_POWER() { \ if (k_prev.is_one()) { \ new_args.push_back(prev); \ } \ else { \ expr * pargs[2] = { prev, mk_numeral(k_prev) }; \ new_args.push_back(m().mk_app(get_fid(), power_decl_kind(), 2, pargs)); \ } \ } for (unsigned i = 1; i < num_args; i++) { expr * arg = get_power_body(args[i], k); if (arg == prev) { k_prev += k; } else { PUSH_POWER(); prev = arg; k_prev = k; } } PUSH_POWER(); SASSERT(new_args.size() > 0); if (new_args.size() == 1) { return new_args[0]; } else { return m().mk_app(get_fid(), mul_decl_kind(), new_args.size(), new_args.c_ptr()); } } else { return m().mk_app(get_fid(), mul_decl_kind(), num_args, args); } } } template expr * poly_rewriter::mk_mul_app(numeral const & c, expr * arg) { if (c.is_one()) { return arg; } else { expr * new_args[2] = { mk_numeral(c), arg }; return mk_mul_app(2, new_args); } } template br_status poly_rewriter::mk_flat_mul_core(unsigned num_args, expr * const * args, expr_ref & result) { SASSERT(num_args >= 2); // only try to apply flattening if it is not already in one of the flat monomial forms // - (* c x) // - (* c (* x_1 ... x_n)) if (num_args != 2 || !is_numeral(args[0]) || (is_mul(args[1]) && is_numeral(to_app(args[1])->get_arg(0)))) { unsigned i; for (i = 0; i < num_args; i++) { if (is_mul(args[i])) break; } if (i < num_args) { // input has nested monomials. ptr_buffer flat_args; // we need the todo buffer to handle: (* (* c (* x_1 ... x_n)) (* d (* y_1 ... y_n))) ptr_buffer todo; flat_args.append(i, args); for (unsigned j = i; j < num_args; j++) { if (is_mul(args[j])) { todo.push_back(args[j]); while (!todo.empty()) { expr * curr = todo.back(); todo.pop_back(); if (is_mul(curr)) { unsigned k = to_app(curr)->get_num_args(); while (k > 0) { --k; todo.push_back(to_app(curr)->get_arg(k)); } } else { flat_args.push_back(curr); } } } else { flat_args.push_back(args[j]); } } TRACE("poly_rewriter", tout << "flat mul:\n"; for (unsigned i = 0; i < num_args; i++) tout << mk_bounded_pp(args[i], m()) << "\n"; tout << "---->\n"; for (unsigned i = 0; i < flat_args.size(); i++) tout << mk_bounded_pp(flat_args[i], m()) << "\n";); br_status st = mk_nflat_mul_core(flat_args.size(), flat_args.c_ptr(), result); if (st == BR_FAILED) { result = mk_mul_app(flat_args.size(), flat_args.c_ptr()); return BR_DONE; } return st; } } return mk_nflat_mul_core(num_args, args, result); } template struct poly_rewriter::mon_pw_lt { poly_rewriter & m_owner; mon_pw_lt(poly_rewriter & o):m_owner(o) {} bool operator()(expr * n1, expr * n2) const { rational k; return lt(m_owner.get_power_body(n1, k), m_owner.get_power_body(n2, k)); } }; template br_status poly_rewriter::mk_nflat_mul_core(unsigned num_args, expr * const * args, expr_ref & result) { SASSERT(num_args >= 2); // cheap case numeral a; if (num_args == 2 && is_numeral(args[0], a) && !a.is_one() && !a.is_zero() && (is_var(args[1]) || to_app(args[1])->get_decl()->get_family_id() != get_fid())) return BR_FAILED; numeral c(1); unsigned num_coeffs = 0; unsigned num_add = 0; expr * var = 0; for (unsigned i = 0; i < num_args; i++) { expr * arg = args[i]; if (is_numeral(arg, a)) { num_coeffs++; c *= a; } else { var = arg; if (is_add(arg)) num_add++; } } normalize(c); // (* c_1 ... c_n) --> c_1*...*c_n if (num_coeffs == num_args) { result = mk_numeral(c); return BR_DONE; } // (* s ... 0 ... r) --> 0 if (c.is_zero()) { result = mk_numeral(c); return BR_DONE; } if (num_coeffs == num_args - 1) { SASSERT(var != 0); // (* c_1 ... c_n x) --> x if c_1*...*c_n == 1 if (c.is_one()) { result = var; return BR_DONE; } numeral c_prime; if (is_mul(var)) { // apply basic simplification even when flattening is not enabled. // (* c1 (* c2 x)) --> (* c1*c2 x) if (to_app(var)->get_num_args() == 2 && is_numeral(to_app(var)->get_arg(0), c_prime)) { c *= c_prime; normalize(c); result = mk_mul_app(c, to_app(var)->get_arg(1)); return BR_REWRITE1; } else { // var is a power-product return BR_FAILED; } } if (num_add == 0 || m_hoist_cmul) { SASSERT(!is_add(var) || m_hoist_cmul); if (num_args == 2 && args[1] == var) { DEBUG_CODE({ numeral c_prime; SASSERT(is_numeral(args[0], c_prime) && c == c_prime); }); // it is already simplified return BR_FAILED; } // (* c_1 ... c_n x) --> (* c_1*...*c_n x) result = mk_mul_app(c, var); return BR_DONE; } else { SASSERT(is_add(var)); // (* c_1 ... c_n (+ t_1 ... t_m)) --> (+ (* c_1*...*c_n t_1) ... (* c_1*...*c_n t_m)) ptr_buffer new_add_args; unsigned num = to_app(var)->get_num_args(); for (unsigned i = 0; i < num; i++) { new_add_args.push_back(mk_mul_app(c, to_app(var)->get_arg(i))); } result = mk_add_app(new_add_args.size(), new_add_args.c_ptr()); TRACE("mul_bug", tout << "result: " << mk_bounded_pp(result, m(),5) << "\n";); return BR_REWRITE2; } } SASSERT(num_coeffs <= num_args - 2); if (!m_som || num_add == 0) { ptr_buffer new_args; expr * prev = 0; bool ordered = true; for (unsigned i = 0; i < num_args; i++) { expr * curr = args[i]; if (is_numeral(curr)) continue; if (prev != 0 && lt(curr, prev)) ordered = false; new_args.push_back(curr); prev = curr; } TRACE("poly_rewriter", for (unsigned i = 0; i < new_args.size(); i++) { if (i > 0) tout << (lt(new_args[i-1], new_args[i]) ? " < " : " !< "); tout << mk_ismt2_pp(new_args[i], m()); } tout << "\nordered: " << ordered << "\n";); if (ordered && num_coeffs == 0 && !use_power()) return BR_FAILED; if (!ordered) { if (use_power()) std::sort(new_args.begin(), new_args.end(), mon_pw_lt(*this)); else std::sort(new_args.begin(), new_args.end(), ast_to_lt()); TRACE("poly_rewriter", tout << "after sorting:\n"; for (unsigned i = 0; i < new_args.size(); i++) { if (i > 0) tout << (lt(new_args[i-1], new_args[i]) ? " < " : " !< "); tout << mk_ismt2_pp(new_args[i], m()); } tout << "\n";); } SASSERT(new_args.size() >= 2); result = mk_mul_app(new_args.size(), new_args.c_ptr()); result = mk_mul_app(c, result); TRACE("poly_rewriter", tout << "mk_nflat_mul_core result:\n" << mk_ismt2_pp(result, m()) << "\n";); return BR_DONE; } SASSERT(m_som && num_add > 0); sbuffer szs; sbuffer it; sbuffer sums; for (unsigned i = 0; i < num_args; i ++) { it.push_back(0); expr * arg = args[i]; if (is_add(arg)) { sums.push_back(const_cast(to_app(arg)->get_args())); szs.push_back(to_app(arg)->get_num_args()); } else { sums.push_back(const_cast(args + i)); szs.push_back(1); SASSERT(sums.back()[0] == arg); } } expr_ref_buffer sum(m()); // must be ref_buffer because we may throw an exception ptr_buffer m_args; TRACE("som", tout << "starting som...\n";); do { TRACE("som", for (unsigned i = 0; i < it.size(); i++) tout << it[i] << " "; tout << "\n";); if (sum.size() > m_som_blowup) throw rewriter_exception(g_ste_blowup_msg); m_args.reset(); for (unsigned i = 0; i < num_args; i++) { expr * const * v = sums[i]; expr * arg = v[it[i]]; m_args.push_back(arg); } sum.push_back(mk_mul_app(m_args.size(), m_args.c_ptr())); } while (product_iterator_next(szs.size(), szs.c_ptr(), it.c_ptr())); result = mk_add_app(sum.size(), sum.c_ptr()); return BR_REWRITE2; } template br_status poly_rewriter::mk_flat_add_core(unsigned num_args, expr * const * args, expr_ref & result) { unsigned i; for (i = 0; i < num_args; i++) { if (is_add(args[i])) break; } if (i < num_args) { // has nested ADDs ptr_buffer flat_args; flat_args.append(i, args); for (; i < num_args; i++) { expr * arg = args[i]; // Remark: all rewrites are depth 1. if (is_add(arg)) { unsigned num = to_app(arg)->get_num_args(); for (unsigned j = 0; j < num; j++) flat_args.push_back(to_app(arg)->get_arg(j)); } else { flat_args.push_back(arg); } } br_status st = mk_nflat_add_core(flat_args.size(), flat_args.c_ptr(), result); if (st == BR_FAILED) { result = mk_add_app(flat_args.size(), flat_args.c_ptr()); return BR_DONE; } return st; } return mk_nflat_add_core(num_args, args, result); } template inline expr * poly_rewriter::get_power_product(expr * t) { if (is_mul(t) && to_app(t)->get_num_args() == 2 && is_numeral(to_app(t)->get_arg(0))) return to_app(t)->get_arg(1); return t; } template inline expr * poly_rewriter::get_power_product(expr * t, numeral & a) { if (is_mul(t) && to_app(t)->get_num_args() == 2 && is_numeral(to_app(t)->get_arg(0), a)) return to_app(t)->get_arg(1); a = numeral(1); return t; } template bool poly_rewriter::is_mul(expr * t, numeral & c, expr * & pp) { if (!is_mul(t) || to_app(t)->get_num_args() != 2) return false; if (!is_numeral(to_app(t)->get_arg(0), c)) return false; pp = to_app(t)->get_arg(1); return true; } template struct poly_rewriter::hoist_cmul_lt { poly_rewriter & m_r; hoist_cmul_lt(poly_rewriter & r):m_r(r) {} bool operator()(expr * t1, expr * t2) const { expr * pp1, * pp2; numeral c1, c2; bool is_mul1 = m_r.is_mul(t1, c1, pp1); bool is_mul2 = m_r.is_mul(t2, c2, pp2); if (!is_mul1 && is_mul2) return true; if (is_mul1 && !is_mul2) return false; if (!is_mul1 && !is_mul2) return t1->get_id() < t2->get_id(); if (c1 < c2) return true; if (c1 > c2) return false; return pp1->get_id() < pp2->get_id(); } }; template void poly_rewriter::hoist_cmul(expr_ref_buffer & args) { unsigned sz = args.size(); std::sort(args.c_ptr(), args.c_ptr() + sz, hoist_cmul_lt(*this)); numeral c, c_prime; ptr_buffer pps; expr * pp, * pp_prime; unsigned j = 0; unsigned i = 0; while (i < sz) { expr * mon = args[i]; if (is_mul(mon, c, pp) && i < sz - 1) { expr * mon_prime = args[i+1]; if (is_mul(mon_prime, c_prime, pp_prime) && c == c_prime) { // found target pps.reset(); pps.push_back(pp); pps.push_back(pp_prime); i += 2; while (i < sz && is_mul(args[i], c_prime, pp_prime) && c == c_prime) { pps.push_back(pp_prime); i++; } SASSERT(is_numeral(to_app(mon)->get_arg(0), c_prime) && c == c_prime); expr * mul_args[2] = { to_app(mon)->get_arg(0), mk_add_app(pps.size(), pps.c_ptr()) }; args.set(j, mk_mul_app(2, mul_args)); j++; continue; } } args.set(j, mon); j++; i++; } args.resize(j); } template br_status poly_rewriter::mk_nflat_add_core(unsigned num_args, expr * const * args, expr_ref & result) { SASSERT(num_args >= 2); numeral c; unsigned num_coeffs = 0; numeral a; expr_fast_mark1 visited; // visited.is_marked(power_product) if the power_product occurs in args expr_fast_mark2 multiple; // multiple.is_marked(power_product) if power_product occurs more than once bool has_multiple = false; expr * prev = 0; bool ordered = true; for (unsigned i = 0; i < num_args; i++) { expr * arg = args[i]; if (is_numeral(arg, a)) { num_coeffs++; c += a; } else { // arg is not a numeral if (m_sort_sums && ordered) { if (prev != 0 && lt(arg, prev)) ordered = false; prev = arg; } } arg = get_power_product(arg); if (visited.is_marked(arg)) { multiple.mark(arg); has_multiple = true; } else { visited.mark(arg); } } normalize(c); SASSERT(m_sort_sums || ordered); TRACE("sort_sums", tout << "ordered: " << ordered << "\n"; for (unsigned i = 0; i < num_args; i++) tout << mk_ismt2_pp(args[i], m()) << "\n";); if (has_multiple) { // expensive case buffer coeffs; m_expr2pos.reset(); // compute the coefficient of power products that occur multiple times. for (unsigned i = 0; i < num_args; i++) { expr * arg = args[i]; if (is_numeral(arg)) continue; expr * pp = get_power_product(arg, a); if (!multiple.is_marked(pp)) continue; unsigned pos; if (m_expr2pos.find(pp, pos)) { coeffs[pos] += a; } else { m_expr2pos.insert(pp, coeffs.size()); coeffs.push_back(a); } } expr_ref_buffer new_args(m()); if (!c.is_zero()) { new_args.push_back(mk_numeral(c)); } // copy power products with non zero coefficients to new_args visited.reset(); for (unsigned i = 0; i < num_args; i++) { expr * arg = args[i]; if (is_numeral(arg)) continue; expr * pp = get_power_product(arg); if (!multiple.is_marked(pp)) { new_args.push_back(arg); } else if (!visited.is_marked(pp)) { visited.mark(pp); unsigned pos = UINT_MAX; m_expr2pos.find(pp, pos); SASSERT(pos != UINT_MAX); a = coeffs[pos]; normalize(a); if (!a.is_zero()) new_args.push_back(mk_mul_app(a, pp)); } } if (m_hoist_cmul) { hoist_cmul(new_args); } else if (m_sort_sums) { TRACE("sort_sums_bug", tout << "new_args.size(): " << new_args.size() << "\n";); if (c.is_zero()) std::sort(new_args.c_ptr(), new_args.c_ptr() + new_args.size(), ast_to_lt()); else std::sort(new_args.c_ptr() + 1, new_args.c_ptr() + new_args.size(), ast_to_lt()); } result = mk_add_app(new_args.size(), new_args.c_ptr()); if (hoist_multiplication(result)) { return BR_REWRITE_FULL; } return BR_DONE; } else { SASSERT(!has_multiple); if (ordered && !m_hoist_mul && !m_hoist_cmul) { if (num_coeffs == 0) return BR_FAILED; if (num_coeffs == 1 && is_numeral(args[0], a) && !a.is_zero()) return BR_FAILED; } expr_ref_buffer new_args(m()); if (!c.is_zero()) new_args.push_back(mk_numeral(c)); for (unsigned i = 0; i < num_args; i++) { expr * arg = args[i]; if (is_numeral(arg)) continue; new_args.push_back(arg); } if (m_hoist_cmul) { hoist_cmul(new_args); } else if (!ordered) { if (c.is_zero()) std::sort(new_args.c_ptr(), new_args.c_ptr() + new_args.size(), ast_to_lt()); else std::sort(new_args.c_ptr() + 1, new_args.c_ptr() + new_args.size(), ast_to_lt()); } result = mk_add_app(new_args.size(), new_args.c_ptr()); if (hoist_multiplication(result)) { return BR_REWRITE_FULL; } return BR_DONE; } } template br_status poly_rewriter::mk_uminus(expr * arg, expr_ref & result) { numeral a; set_curr_sort(m().get_sort(arg)); if (is_numeral(arg, a)) { a.neg(); normalize(a); result = mk_numeral(a); return BR_DONE; } else { result = mk_mul_app(numeral(-1), arg); return BR_REWRITE1; } } template br_status poly_rewriter::mk_sub(unsigned num_args, expr * const * args, expr_ref & result) { SASSERT(num_args > 0); if (num_args == 1) { result = args[0]; return BR_DONE; } set_curr_sort(m().get_sort(args[0])); expr * minus_one = mk_numeral(numeral(-1)); ptr_buffer new_args; new_args.push_back(args[0]); for (unsigned i = 1; i < num_args; i++) { expr * aux_args[2] = { minus_one, args[i] }; new_args.push_back(mk_mul_app(2, aux_args)); } result = mk_add_app(new_args.size(), new_args.c_ptr()); return BR_REWRITE2; } /** \brief Cancel/Combine monomials that occur is the left and right hand sides. \remark If move = true, then all non-constant monomials are moved to the left-hand-side. */ template br_status poly_rewriter::cancel_monomials(expr * lhs, expr * rhs, bool move, expr_ref & lhs_result, expr_ref & rhs_result) { set_curr_sort(m().get_sort(lhs)); unsigned lhs_sz; expr * const * lhs_monomials = get_monomials(lhs, lhs_sz); unsigned rhs_sz; expr * const * rhs_monomials = get_monomials(rhs, rhs_sz); expr_fast_mark1 visited; // visited.is_marked(power_product) if the power_product occurs in lhs or rhs expr_fast_mark2 multiple; // multiple.is_marked(power_product) if power_product occurs more than once bool has_multiple = false; numeral c(0); numeral a; unsigned num_coeffs = 0; for (unsigned i = 0; i < lhs_sz; i++) { expr * arg = lhs_monomials[i]; if (is_numeral(arg, a)) { c += a; num_coeffs++; } else { visited.mark(get_power_product(arg)); } } if (move && num_coeffs == 0 && is_numeral(rhs)) return BR_FAILED; for (unsigned i = 0; i < rhs_sz; i++) { expr * arg = rhs_monomials[i]; if (is_numeral(arg, a)) { c -= a; num_coeffs++; } else { expr * pp = get_power_product(arg); if (visited.is_marked(pp)) { multiple.mark(pp); has_multiple = true; } } } normalize(c); if (!has_multiple && num_coeffs <= 1) { if (move) { if (is_numeral(rhs)) return BR_FAILED; } else { if (num_coeffs == 0 || is_numeral(rhs)) return BR_FAILED; } } buffer coeffs; m_expr2pos.reset(); for (unsigned i = 0; i < lhs_sz; i++) { expr * arg = lhs_monomials[i]; if (is_numeral(arg)) continue; expr * pp = get_power_product(arg, a); if (!multiple.is_marked(pp)) continue; unsigned pos; if (m_expr2pos.find(pp, pos)) { coeffs[pos] += a; } else { m_expr2pos.insert(pp, coeffs.size()); coeffs.push_back(a); } } for (unsigned i = 0; i < rhs_sz; i++) { expr * arg = rhs_monomials[i]; if (is_numeral(arg)) continue; expr * pp = get_power_product(arg, a); if (!multiple.is_marked(pp)) continue; unsigned pos = UINT_MAX; m_expr2pos.find(pp, pos); SASSERT(pos != UINT_MAX); coeffs[pos] -= a; } ptr_buffer new_lhs_monomials; new_lhs_monomials.push_back(0); // save space for coefficient if needed // copy power products with non zero coefficients to new_lhs_monomials visited.reset(); for (unsigned i = 0; i < lhs_sz; i++) { expr * arg = lhs_monomials[i]; if (is_numeral(arg)) continue; expr * pp = get_power_product(arg); if (!multiple.is_marked(pp)) { new_lhs_monomials.push_back(arg); } else if (!visited.is_marked(pp)) { visited.mark(pp); unsigned pos = UINT_MAX; m_expr2pos.find(pp, pos); SASSERT(pos != UINT_MAX); a = coeffs[pos]; if (!a.is_zero()) new_lhs_monomials.push_back(mk_mul_app(a, pp)); } } ptr_buffer new_rhs_monomials; new_rhs_monomials.push_back(0); // save space for coefficient if needed for (unsigned i = 0; i < rhs_sz; i++) { expr * arg = rhs_monomials[i]; if (is_numeral(arg)) continue; expr * pp = get_power_product(arg, a); if (!multiple.is_marked(pp)) { if (move) { if (!a.is_zero()) { if (a.is_minus_one()) { new_lhs_monomials.push_back(pp); } else { a.neg(); SASSERT(!a.is_one()); expr * args[2] = { mk_numeral(a), pp }; new_lhs_monomials.push_back(mk_mul_app(2, args)); } } } else { new_rhs_monomials.push_back(arg); } } } bool c_at_rhs = false; if (move) { if (m_sort_sums) { // + 1 to skip coefficient std::sort(new_lhs_monomials.begin() + 1, new_lhs_monomials.end(), ast_to_lt()); } c_at_rhs = true; } else if (new_rhs_monomials.size() == 1) { // rhs is empty c_at_rhs = true; } else if (new_lhs_monomials.size() > 1) { c_at_rhs = true; } if (c_at_rhs) { c.neg(); normalize(c); new_rhs_monomials[0] = mk_numeral(c); lhs_result = mk_add_app(new_lhs_monomials.size() - 1, new_lhs_monomials.c_ptr() + 1); rhs_result = mk_add_app(new_rhs_monomials.size(), new_rhs_monomials.c_ptr()); } else { new_lhs_monomials[0] = mk_numeral(c); lhs_result = mk_add_app(new_lhs_monomials.size(), new_lhs_monomials.c_ptr()); rhs_result = mk_add_app(new_rhs_monomials.size() - 1, new_rhs_monomials.c_ptr() + 1); } return BR_DONE; } #define TO_BUFFER(_tester_, _buffer_, _e_) \ _buffer_.push_back(_e_); \ for (unsigned _i = 0; _i < _buffer_.size(); ) { \ expr* _e = _buffer_[_i]; \ if (_tester_(_e)) { \ app* a = to_app(_e); \ _buffer_[_i] = a->get_arg(0); \ for (unsigned _j = 1; _j < a->get_num_args(); ++_j) { \ _buffer_.push_back(a->get_arg(_j)); \ } \ } \ else { \ ++_i; \ } \ } \ template bool poly_rewriter::hoist_multiplication(expr_ref& som) { if (!m_hoist_mul) { return false; } ptr_buffer adds, muls; TO_BUFFER(is_add, adds, som); buffer valid(adds.size(), true); obj_map mul_map; unsigned j; bool change = false; for (unsigned k = 0; k < adds.size(); ++k) { expr* e = adds[k]; muls.reset(); TO_BUFFER(is_mul, muls, e); for (unsigned i = 0; i < muls.size(); ++i) { e = muls[i]; if (is_numeral(e)) { continue; } if (mul_map.find(e, j) && valid[j] && j != k) { m_curr_sort = m().get_sort(adds[k]); adds[j] = merge_muls(adds[j], adds[k]); adds[k] = mk_numeral(rational(0)); valid[j] = false; valid[k] = false; change = true; break; } else { mul_map.insert(e, k); } } } if (!change) { return false; } som = mk_add_app(adds.size(), adds.c_ptr()); return true; } template expr* poly_rewriter::merge_muls(expr* x, expr* y) { ptr_buffer m1, m2; TO_BUFFER(is_mul, m1, x); TO_BUFFER(is_mul, m2, y); unsigned k = 0; for (unsigned i = 0; i < m1.size(); ++i) { x = m1[i]; bool found = false; unsigned j; for (j = k; j < m2.size(); ++j) { found = m2[j] == x; if (found) break; } if (found) { std::swap(m1[i],m1[k]); std::swap(m2[j],m2[k]); ++k; } } m_curr_sort = m().get_sort(x); SASSERT(k > 0); SASSERT(m1.size() >= k); SASSERT(m2.size() >= k); expr* args[2] = { mk_mul_app(m1.size()-k, m1.c_ptr()+k), mk_mul_app(m2.size()-k, m2.c_ptr()+k) }; if (k == m1.size()) { m1.push_back(0); } m1[k] = mk_add_app(2, args); return mk_mul_app(k+1, m1.c_ptr()); }