/*++ Copyright (c) 2012 Microsoft Corporation Module Name: qflra_tactic.cpp Abstract: Tactic for QF_LRA Author: Leonardo (leonardo) 2012-02-26 Notes: --*/ #include"tactical.h" #include"simplify_tactic.h" #include"propagate_values_tactic.h" #include"solve_eqs_tactic.h" #include"elim_uncnstr_tactic.h" #include"smt_tactic.h" #include"recover_01_tactic.h" #include"ctx_simplify_tactic.h" #include"probe_arith.h" tactic * mk_qflra_tactic(ast_manager & m, params_ref const & p) { params_ref pivot_p; pivot_p.set_bool("arith.greatest_error_pivot", true); params_ref main_p = p; main_p.set_bool("elim_and", true); main_p.set_bool("som", true); main_p.set_bool("blast_distinct", true); params_ref ctx_simp_p; ctx_simp_p.set_uint("max_depth", 30); ctx_simp_p.set_uint("max_steps", 5000000); params_ref lhs_p; lhs_p.set_bool("arith_lhs", true); lhs_p.set_bool("eq2ineq", true); params_ref elim_to_real_p; elim_to_real_p.set_bool("elim_to_real", true); #if 0 tactic * mip = and_then(fail_if(mk_produce_proofs_probe()), fail_if(mk_produce_unsat_cores_probe()), using_params(and_then(and_then(mk_simplify_tactic(m), mk_recover_01_tactic(m), using_params(mk_simplify_tactic(m), elim_to_real_p), mk_propagate_values_tactic(m)), using_params(mk_ctx_simplify_tactic(m), ctx_simp_p), mk_elim_uncnstr_tactic(m), mk_solve_eqs_tactic(m), using_params(mk_simplify_tactic(m), lhs_p), using_params(mk_simplify_tactic(m), elim_to_real_p) ), main_p), fail_if(mk_not(mk_is_mip_probe())), try_for(mk_mip_tactic(m), 30000), mk_fail_if_undecided_tactic()); #endif // return using_params(or_else(mip, // using_params(mk_smt_tactic(), pivot_p)), // p); #if 0 params_ref simplex_0, simplex_1, simplex_2; simplex_0.set_uint("lp.simplex_strategy", 0); simplex_1.set_uint("lp.simplex_strategy", 1); simplex_2.set_uint("lp.simplex_strategy", 2); return par(using_params(mk_smt_tactic(), simplex_0), using_params(mk_smt_tactic(), simplex_1), using_params(mk_smt_tactic(), simplex_2)); #else return using_params(using_params(mk_smt_tactic(), pivot_p), p); #endif }