# Finite Set API Examples This document provides usage examples for the finite set API in Java and C#. ## Java Example ```java import com.microsoft.z3.*; public class FiniteSetExample { public static void main(String[] args) { try (Context ctx = new Context()) { // Create finite set sort over integers Sort intSort = ctx.getIntSort(); FiniteSetSort intSetSort = ctx.mkFiniteSetSort(intSort); // Check if it's a finite set sort boolean isFiniteSet = ctx.isFiniteSetSort(intSetSort); System.out.println("Is finite set sort: " + isFiniteSet); // Get the element sort (basis) Sort basis = ctx.getFiniteSetSortBasis(intSetSort); System.out.println("Element sort: " + basis); // Create sets Expr emptySet = ctx.mkFiniteSetEmpty(intSetSort); IntExpr one = ctx.mkInt(1); IntExpr two = ctx.mkInt(2); Expr singleton1 = ctx.mkFiniteSetSingleton(one); Expr singleton2 = ctx.mkFiniteSetSingleton(two); // Set operations Expr union = ctx.mkFiniteSetUnion(singleton1, singleton2); Expr intersect = ctx.mkFiniteSetIntersect(union, singleton1); Expr difference = ctx.mkFiniteSetDifference(union, singleton1); // Set queries BoolExpr member = ctx.mkFiniteSetMember(one, union); Expr size = ctx.mkFiniteSetSize(union); BoolExpr subset = ctx.mkFiniteSetSubset(singleton1, union); // Create integer range [1..10] Expr range = ctx.mkFiniteSetRange(ctx.mkInt(1), ctx.mkInt(10)); // Solve with finite sets Solver solver = ctx.mkSolver(); solver.add(ctx.mkFiniteSetMember(one, union)); solver.add(ctx.mkEq(ctx.mkFiniteSetSize(union), ctx.mkInt(2))); Status status = solver.check(); System.out.println("Solver result: " + status); } } } ``` ## C# Example ```csharp using System; using Microsoft.Z3; class FiniteSetExample { static void Main(string[] args) { using (Context ctx = new Context()) { // Create finite set sort over integers Sort intSort = ctx.IntSort; FiniteSetSort intSetSort = ctx.MkFiniteSetSort(intSort); // Check if it's a finite set sort bool isFiniteSet = ctx.IsFiniteSetSort(intSetSort); Console.WriteLine($"Is finite set sort: {isFiniteSet}"); // Get the element sort (basis) Sort basis = ctx.GetFiniteSetSortBasis(intSetSort); // Or use the property: Sort basis2 = intSetSort.Basis; Console.WriteLine($"Element sort: {basis}"); // Create sets Expr emptySet = ctx.MkFiniteSetEmpty(intSetSort); IntExpr one = ctx.MkInt(1); IntExpr two = ctx.MkInt(2); Expr singleton1 = ctx.MkFiniteSetSingleton(one); Expr singleton2 = ctx.MkFiniteSetSingleton(two); // Set operations Expr union = ctx.MkFiniteSetUnion(singleton1, singleton2); Expr intersect = ctx.MkFiniteSetIntersect(union, singleton1); Expr difference = ctx.MkFiniteSetDifference(union, singleton1); // Set queries BoolExpr member = ctx.MkFiniteSetMember(one, union); Expr size = ctx.MkFiniteSetSize(union); BoolExpr subset = ctx.MkFiniteSetSubset(singleton1, union); // Create integer range [1..10] Expr range = ctx.MkFiniteSetRange(ctx.MkInt(1), ctx.MkInt(10)); // Solve with finite sets Solver solver = ctx.MkSolver(); solver.Add(ctx.MkFiniteSetMember(one, union)); solver.Add(ctx.MkEq(ctx.MkFiniteSetSize(union), ctx.MkInt(2))); Status status = solver.Check(); Console.WriteLine($"Solver result: {status}"); } } } ``` ## API Methods ### Sort Operations - **Java**: `mkFiniteSetSort(Sort elemSort)`, `isFiniteSetSort(Sort s)`, `getFiniteSetSortBasis(Sort s)` - **C#**: `MkFiniteSetSort(Sort elemSort)`, `IsFiniteSetSort(Sort s)`, `GetFiniteSetSortBasis(Sort s)` ### Set Constructors - **Java**: `mkFiniteSetEmpty(Sort setSort)`, `mkFiniteSetSingleton(Expr elem)`, `mkFiniteSetRange(Expr low, Expr high)` - **C#**: `MkFiniteSetEmpty(Sort setSort)`, `MkFiniteSetSingleton(Expr elem)`, `MkFiniteSetRange(Expr low, Expr high)` ### Set Operations - **Java**: `mkFiniteSetUnion(Expr s1, Expr s2)`, `mkFiniteSetIntersect(Expr s1, Expr s2)`, `mkFiniteSetDifference(Expr s1, Expr s2)` - **C#**: `MkFiniteSetUnion(Expr s1, Expr s2)`, `MkFiniteSetIntersect(Expr s1, Expr s2)`, `MkFiniteSetDifference(Expr s1, Expr s2)` ### Set Queries - **Java**: `mkFiniteSetMember(Expr elem, Expr set)`, `mkFiniteSetSize(Expr set)`, `mkFiniteSetSubset(Expr s1, Expr s2)` - **C#**: `MkFiniteSetMember(Expr elem, Expr set)`, `MkFiniteSetSize(Expr set)`, `MkFiniteSetSubset(Expr s1, Expr s2)` ### Set Transformations - **Java**: `mkFiniteSetMap(Expr f, Expr set)`, `mkFiniteSetFilter(Expr f, Expr set)` - **C#**: `MkFiniteSetMap(Expr f, Expr set)`, `MkFiniteSetFilter(Expr f, Expr set)` ## Notes - Finite sets are distinct from array-based sets and provide a more direct representation - The finite set sort extends `Sort` directly (not `ArraySort`) - All operations follow the SMT-LIB2 finite set theory syntax - Native bindings are auto-generated from the C API during build