/*++ Copyright (c) 2006 Microsoft Corporation Module Name: theory_diff_logic_def.h Abstract: Difference Logic Author: Leonardo de Moura (leonardo) 2006-11-29. Nikolaj Bjorner (nbjorner) 2008-05-11 Revision History: 2008-05-11 ported from v1.2. Add theory propagation. --*/ #ifndef _THEORY_DIFF_LOGIC_DEF_H_ #define _THEORY_DIFF_LOGIC_DEF_H_ #include"theory_diff_logic.h" #include"smt_context.h" #include"map.h" #include"ast_pp.h" #include"warning.h" #include"smt_model_generator.h" using namespace smt; template std::ostream& theory_diff_logic::atom::display(theory_diff_logic const& th, std::ostream& out) const { context& ctx = th.get_context(); lbool asgn = ctx.get_assignment(m_bvar); //SASSERT(asgn == l_undef || ((asgn == l_true) == m_true)); bool sign = (l_undef == asgn) || m_true; return out << literal(m_bvar, sign) << " " << mk_pp(ctx.bool_var2expr(m_bvar), th.get_manager()) << " "; } template std::ostream& theory_diff_logic::eq_atom::display(theory_diff_logic const& th, std::ostream& out) const { atom::display(th, out); lbool asgn = th.get_context().get_assignment(this->m_bvar); if (l_undef == asgn) { out << "unassigned\n"; } else { out << mk_pp(m_le.get(), m_le.get_manager()) << " " << mk_pp(m_ge.get(), m_ge.get_manager()) << "\n"; } return out; } template std::ostream& theory_diff_logic::le_atom::display(theory_diff_logic const& th, std::ostream& out) const { atom::display(th, out); lbool asgn = th.get_context().get_assignment(this->m_bvar); if (l_undef == asgn) { out << "unassigned\n"; } else { th.m_graph.display_edge(out, get_asserted_edge()); } return out; } // ----------------------------------------- // theory_diff_logic::nc_functor template void theory_diff_logic::nc_functor::reset() { m_antecedents.reset(); } // ----------------------------------------- // theory_diff_logic template void theory_diff_logic::init(context * ctx) { theory::init(ctx); app* zero; enode* e; zero = m_util.mk_numeral(rational(0), true); e = ctx->mk_enode(zero, false, false, true); SASSERT(!is_attached_to_var(e)); m_zero_int = mk_var(e); zero = m_util.mk_numeral(rational(0), false); e = ctx->mk_enode(zero, false, false, true); SASSERT(!is_attached_to_var(e)); m_zero_real = mk_var(e); } template bool theory_diff_logic::internalize_term(app * term) { bool result = null_theory_var != mk_term(term); CTRACE("arith", !result, tout << "Did not internalize " << mk_pp(term, get_manager()) << "\n";); found_non_diff_logic_expr(term); return result; } template class diff_logic_bounds { bool m_inf_is_set; bool m_sup_is_set; bool m_eq_found; literal m_inf_l; literal m_sup_l; literal m_eq_l; numeral m_inf_w; numeral m_sup_w; numeral m_w; public: diff_logic_bounds() { reset(numeral(0)); } void reset(numeral const& w) { m_inf_is_set = false; m_sup_is_set = false; m_eq_found = false; m_inf_l = null_literal; m_sup_l = null_literal; m_eq_l = null_literal; m_w = w; } void operator()(numeral const& w, literal l) { if (l != null_literal) { if ((w < m_w) && (!m_inf_is_set || w > m_inf_w)) { m_inf_w = w; m_inf_l = l; m_inf_is_set = true; } else if ((w > m_w) && (!m_sup_is_set || w < m_sup_w)) { m_sup_w = w; m_sup_l = l; m_sup_is_set = true; } else if (w == m_w) { m_eq_found = true; m_eq_l = l; } } } bool get_inf(numeral& w, literal& l) const { w = m_inf_w; l = m_inf_l; return m_inf_is_set; } bool get_sup(numeral& w, literal& l) const { w = m_sup_w; l = m_sup_l; return m_sup_is_set; } bool get_eq(literal& l) const { l = m_eq_l; return m_eq_found; } }; // // Atoms are of the form x + -1*y <= k, or x + -1*y = k // template void theory_diff_logic::found_non_diff_logic_expr(expr * n) { if (!m_non_diff_logic_exprs) { TRACE("non_diff_logic", tout << "found non diff logic expression:\n" << mk_pp(n, get_manager()) << "\n";); get_context().push_trail(value_trail(m_non_diff_logic_exprs)); m_non_diff_logic_exprs = true; } } template bool theory_diff_logic::internalize_atom(app * n, bool gate_ctx) { context & ctx = get_context(); if (!m_util.is_le(n) && !m_util.is_ge(n)) { found_non_diff_logic_expr(n); return false; } SASSERT(m_util.is_le(n) || m_util.is_ge(n)); SASSERT(!ctx.b_internalized(n)); bool_var bv; rational kr; app * x, *y, *z; theory_var source, target; // target - source <= k app * lhs = to_app(n->get_arg(0)); app * rhs = to_app(n->get_arg(1)); if (!m_util.is_numeral(rhs, kr)) { found_non_diff_logic_expr(n); return false; } numeral k(kr); bool is_add = m_util.is_add(lhs) && lhs->get_num_args() == 2; if (is_add) { x = to_app(lhs->get_arg(0)); y = to_app(lhs->get_arg(1)); } if (is_add && is_negative(x, z)) { target = mk_var(y); source = mk_var(z); } else if (is_add && is_negative(y, z)) { target = mk_var(x); source = mk_var(z); } else { target = mk_var(lhs); source = get_zero(lhs); } if (m_util.is_ge(n)) { std::swap(target, source); k.neg(); } bv = ctx.mk_bool_var(n); ctx.set_var_theory(bv, get_id()); literal l(bv); // // Create axioms for situations as: // x - y <= 5 => x - y <= 7 // if (m_params.m_arith_add_binary_bounds) { literal l0; numeral k0; diff_logic_bounds bounds; bounds.reset(k); m_graph.enumerate_edges(source, target, bounds); if (bounds.get_eq(l0)) { ctx.mk_th_axiom(get_id(),~l0,l); ctx.mk_th_axiom(get_id(),~l,l0); } else { if (bounds.get_inf(k0, l0)) { SASSERT(k0 <= k); ctx.mk_th_axiom(get_id(),~l0,l); } if (bounds.get_sup(k0, l0)) { SASSERT(k <= k0); ctx.mk_th_axiom(get_id(),~l,l0); } } } edge_id pos = m_graph.add_edge(source, target, k, l); k.neg(); if (m_util.is_int(lhs)) { SASSERT(k.is_int()); k -= numeral(1); } else { m_is_lia = false; k -= this->m_epsilon; } edge_id neg = m_graph.add_edge(target, source, k, ~l); le_atom * a = alloc(le_atom, bv, pos, neg); m_atoms.push_back(a); m_bool_var2atom.insert(bv, a); TRACE("arith", tout << mk_pp(n, get_manager()) << "\n"; m_graph.display_edge(tout << "pos: ", pos); m_graph.display_edge(tout << "neg: ", neg); ); return true; } template void theory_diff_logic::internalize_eq_eh(app * atom, bool_var v) { context & ctx = get_context(); app * lhs = to_app(atom->get_arg(0)); app * rhs = to_app(atom->get_arg(1)); app * s; if (m_util.is_add(lhs) && to_app(lhs)->get_num_args() == 2 && is_negative(to_app(to_app(lhs)->get_arg(1)), s) && m_util.is_numeral(rhs)) { // force axioms for (= (+ x (* -1 y)) k) // this is necessary because (+ x (* -1 y)) is not a diff logic term. m_arith_eq_adapter.mk_axioms(ctx.get_enode(lhs), ctx.get_enode(rhs)); return; } if (m_params.m_arith_eager_eq_axioms) { enode * n1 = ctx.get_enode(lhs); enode * n2 = ctx.get_enode(rhs); if (n1->get_th_var(get_id()) != null_theory_var && n2->get_th_var(get_id()) != null_theory_var) m_arith_eq_adapter.mk_axioms(n1, n2); } } template void theory_diff_logic::assign_eh(bool_var v, bool is_true) { m_stats.m_num_assertions++; atom * a = 0; m_bool_var2atom.find(v, a); SASSERT(a); SASSERT(get_context().get_assignment(v) != l_undef); SASSERT((get_context().get_assignment(v) == l_true) == is_true); a->assign_eh(is_true); m_asserted_atoms.push_back(a); } template void theory_diff_logic::collect_statistics(::statistics & st) const { st.update("dl conflicts", m_stats.m_num_conflicts); st.update("dl propagations", m_stats.m_num_th2core_prop); st.update("dl asserts", m_stats.m_num_assertions); st.update("core->dl eqs", m_stats.m_num_core2th_eqs); m_arith_eq_adapter.collect_statistics(st); } template void theory_diff_logic::push_scope_eh() { theory::push_scope_eh(); m_graph.push(); m_scopes.push_back(scope()); scope & s = m_scopes.back(); s.m_atoms_lim = m_atoms.size(); s.m_asserted_atoms_lim = m_asserted_atoms.size(); s.m_asserted_qhead_old = m_asserted_qhead; } template void theory_diff_logic::pop_scope_eh(unsigned num_scopes) { unsigned lvl = m_scopes.size(); SASSERT(num_scopes <= lvl); unsigned new_lvl = lvl - num_scopes; scope & s = m_scopes[new_lvl]; del_atoms(s.m_atoms_lim); m_asserted_atoms.shrink(s.m_asserted_atoms_lim); m_asserted_qhead = s.m_asserted_qhead_old; m_scopes.shrink(new_lvl); m_graph.pop(num_scopes); theory::pop_scope_eh(num_scopes); } template final_check_status theory_diff_logic::final_check_eh() { if (can_propagate()) { propagate_core(); return FC_CONTINUE; } TRACE("arith_final", display(tout); ); // either will already be zero (as we don't do mixed constraints). m_graph.set_to_zero(m_zero_int, m_zero_real); SASSERT(is_consistent()); #if 0 TBD: if (propagate_cheap_equalities()) { return FC_CONTINUE; } #endif if (m_non_diff_logic_exprs) { return FC_GIVEUP; } return FC_DONE; } template void theory_diff_logic::del_atoms(unsigned old_size) { typename atoms::iterator begin = m_atoms.begin() + old_size; typename atoms::iterator it = m_atoms.end(); while (it != begin) { --it; atom * a = *it; bool_var bv = a->get_bool_var(); m_bool_var2atom.erase(bv); dealloc(a); } m_atoms.shrink(old_size); } template bool theory_diff_logic::is_negative(app* n, app*& m) { if (!m_util.is_mul(n) || n->get_num_args() != 2) { return false; } rational r; expr* a0 = n->get_arg(0); expr* a1 = n->get_arg(1); if (m_util.is_numeral(a0, r) && r.is_minus_one() && is_app(a1)) { m = to_app(a1); return true; } if (m_util.is_numeral(a1, r) && r.is_minus_one() && is_app(a0)) { m = to_app(a0); return true; } return false; } template void theory_diff_logic::propagate() { if (m_params.m_arith_adaptive) { switch(m_params.m_arith_propagation_strategy) { case ARITH_PROP_PROPORTIONAL: { ++m_num_propagation_calls; if (m_num_propagation_calls * (m_stats.m_num_conflicts + 1) > m_params.m_arith_adaptive_propagation_threshold * get_context().m_stats.m_num_conflicts) { m_num_propagation_calls = 1; TRACE("arith_prop", tout << "propagating: " << m_num_propagation_calls << "\n";); propagate_core(); } else { TRACE("arith_prop", tout << "skipping propagation " << m_num_propagation_calls << "\n";); } break; } case ARITH_PROP_AGILITY: { // update agility with factor generated by other conflicts. double g = m_params.m_arith_adaptive_propagation_threshold; while (m_num_core_conflicts < get_context().m_stats.m_num_conflicts) { m_agility = m_agility*g; ++m_num_core_conflicts; } ++m_num_propagation_calls; bool do_propagate = (m_num_propagation_calls * m_agility > m_params.m_arith_adaptive_propagation_threshold); TRACE("arith_prop", tout << (do_propagate?"propagating: ":"skipping ") << " " << m_num_propagation_calls << " agility: " << m_agility << "\n";); if (do_propagate) { m_num_propagation_calls = 0; propagate_core(); } break; } default: UNREACHABLE(); propagate_core(); } } else { propagate_core(); } } template void theory_diff_logic::inc_conflicts() { m_stats.m_num_conflicts++; if (m_params.m_arith_adaptive) { double g = m_params.m_arith_adaptive_propagation_threshold; m_agility = m_agility*g + 1 - g; } } template void theory_diff_logic::propagate_core() { bool consistent = true; while (consistent && can_propagate()) { atom * a = m_asserted_atoms[m_asserted_qhead]; m_asserted_qhead++; consistent = propagate_atom(a); } } template bool theory_diff_logic::propagate_atom(atom* a) { context& ctx = get_context(); TRACE("arith", a->display(*this, tout); ); if (ctx.inconsistent()) { return false; } switch(a->kind()) { case LE_ATOM: { int edge_id = dynamic_cast(a)->get_asserted_edge(); if (!m_graph.enable_edge(edge_id)) { set_neg_cycle_conflict(); return false; } #if 0 if (m_params.m_arith_bound_prop != BP_NONE) { svector subsumed; m_graph.find_subsumed1(edge_id, subsumed); for (unsigned i = 0; i < subsumed.size(); ++i) { int subsumed_edge_id = subsumed[i]; literal l = m_graph.get_explanation(subsumed_edge_id); context & ctx = get_context(); region& r = ctx.get_region(); ++m_stats.m_num_th2core_prop; ctx.assign(l, new (r) implied_bound_justification(*this, subsumed_edge_id, edge_id)); } } #endif break; } case EQ_ATOM: if (!a->is_true()) { SASSERT(ctx.get_assignment(a->get_bool_var()) == l_false); // eq_atom * ea = dynamic_cast(a); } break; } return true; } template void theory_diff_logic::mark_as_modified_since_eq_prop() { if (!m_modified_since_eq_prop) { get_context().push_trail(value_trail(m_modified_since_eq_prop)); m_modified_since_eq_prop = true; } } template void theory_diff_logic::unmark_as_modified_since_eq_prop() { get_context().push_trail(value_trail(m_modified_since_eq_prop)); m_modified_since_eq_prop = false; } template void theory_diff_logic::del_clause_eh(clause* cls) { } template void theory_diff_logic::new_edge(dl_var src, dl_var dst, unsigned num_edges, edge_id const* edges) { if (!theory_resolve()) { return; } TRACE("dl_activity", tout << "\n";); context& ctx = get_context(); numeral w(0); for (unsigned i = 0; i < num_edges; ++i) { w += m_graph.get_weight(edges[i]); } enode* e1 = get_enode(src); enode* e2 = get_enode(dst); expr* n1 = e1->get_owner(); expr* n2 = e2->get_owner(); bool is_int = m_util.is_int(n1); rational num = w.get_rational().to_rational(); expr_ref le(get_manager()); if (w.is_rational()) { // x - y <= w expr* n3 = m_util.mk_numeral(num, is_int); n2 = m_util.mk_mul(m_util.mk_numeral(rational(-1), is_int), n2); le = m_util.mk_le(m_util.mk_add(n1,n2), n3); } else { // x - y < w // <=> // not (x - y >= w) // <=> // not (y - x <= -w) // SASSERT(w.get_infinitesimal().is_neg()); expr* n3 = m_util.mk_numeral(-num, is_int); n1 = m_util.mk_mul(m_util.mk_numeral(rational(-1), is_int), n1); le = m_util.mk_le(m_util.mk_add(n2,n1), n3); le = get_manager().mk_not(le); } ctx.internalize(le, false); ctx.mark_as_relevant(le.get()); literal lit(ctx.get_literal(le)); bool_var bv = lit.var(); atom* a = 0; m_bool_var2atom.find(bv, a); SASSERT(a); edge_id e_id = static_cast(a)->get_pos(); literal_vector lits; for (unsigned i = 0; i < num_edges; ++i) { lits.push_back(~m_graph.get_explanation(edges[i])); } lits.push_back(lit); TRACE("dl_activity", tout << mk_pp(le, get_manager()) << "\n"; tout << "edge: " << e_id << "\n"; ctx.display_literals_verbose(tout, lits.size(), lits.c_ptr()); tout << "\n"; ); justification * js = 0; if (get_manager().proofs_enabled()) { js = 0; // TBD? } clause_del_eh* del_eh = alloc(theory_diff_logic_del_eh, *this); clause* cls = ctx.mk_clause(lits.size(), lits.c_ptr(), js, CLS_AUX_LEMMA, del_eh); if (!cls) { dealloc(del_eh); } if (dump_lemmas()) { char const * logic = m_is_lia ? "QF_LIA" : "QF_LRA"; ctx.display_lemma_as_smt_problem(lits.size(), lits.c_ptr(), false_literal, logic); } #if 0 TRACE("arith", tout << "shortcut:\n"; for (unsigned i = 0; i < num_edges; ++i) { edge_id e = edges[i]; // tgt <= src + w numeral w = m_graph.get_weight(e); dl_var tgt = m_graph.get_target(e); dl_var src = m_graph.get_source(e); if (i + 1 < num_edges) { dl_var tgt2 = m_graph.get_target(edges[i+1]); SASSERT(src == tgt2); } tout << "$" << tgt << " <= $" << src << " + " << w << "\n"; } { numeral w = m_graph.get_weight(e_id); dl_var tgt = m_graph.get_target(e_id); dl_var src = m_graph.get_source(e_id); tout << "$" << tgt << " <= $" << src << " + " << w << "\n"; } ); #endif } template void theory_diff_logic::set_neg_cycle_conflict() { m_nc_functor.reset(); m_graph.traverse_neg_cycle2(m_params.m_arith_stronger_lemmas, m_nc_functor); inc_conflicts(); literal_vector const& lits = m_nc_functor.get_lits(); context & ctx = get_context(); region& r = ctx.get_region(); TRACE("arith_conflict", //display(tout); tout << "conflict: "; for (unsigned i = 0; i < lits.size(); ++i) { ctx.display_literal_info(tout, lits[i]); } tout << "\n"; ); if (dump_lemmas()) { char const * logic = m_is_lia ? "QF_LIA" : "QF_LRA"; ctx.display_lemma_as_smt_problem(lits.size(), lits.c_ptr(), false_literal, logic); } ctx.set_conflict(ctx.mk_justification(dl_conflict(r, lits.size(), lits.c_ptr()))); } template bool theory_diff_logic::is_offset(app* n, app*& v, app*& offset, rational& r) { if (!m_util.is_add(n)) { return false; } if (n->get_num_args() == 2 && m_util.is_numeral(n->get_arg(0), r)) { v = to_app(n->get_arg(1)); offset = to_app(n->get_arg(0)); return true; } if (n->get_num_args() == 2 && m_util.is_numeral(n->get_arg(1), r)) { v = to_app(n->get_arg(0)); offset = to_app(n->get_arg(1)); return true; } return false; } template theory_var theory_diff_logic::mk_term(app* n) { SASSERT(!m_util.is_sub(n)); SASSERT(!m_util.is_uminus(n)); app* a, *offset; theory_var source, target; enode* e; TRACE("arith", tout << mk_pp(n, get_manager()) << "\n";); rational r; if (m_util.is_numeral(n, r)) { return mk_num(n, r); } else if (is_offset(n, a, offset, r)) { // n = a + k source = mk_var(a); e = get_context().mk_enode(n, false, false, true); target = mk_var(e); numeral k(r); // target - source <= k, source - target <= -k m_graph.enable_edge(m_graph.add_edge(source, target, k, null_literal)); m_graph.enable_edge(m_graph.add_edge(target, source, -k, null_literal)); return target; } else if (m_util.is_add(n)) { return null_theory_var; } else if (m_util.is_mul(n)) { return null_theory_var; } else if (m_util.is_div(n)) { return null_theory_var; } else if (m_util.is_idiv(n)) { return null_theory_var; } else if (m_util.is_mod(n)) { return null_theory_var; } else if (m_util.is_rem(n)) { return null_theory_var; } else { return mk_var(n); } } template theory_var theory_diff_logic::mk_num(app* n, rational const& r) { theory_var v = null_theory_var; enode* e = 0; context& ctx = get_context(); if (r.is_zero()) { v = get_zero(n); } else if (ctx.e_internalized(n)) { e = ctx.get_enode(n); v = e->get_th_var(get_id()); SASSERT(v != null_theory_var); } else { theory_var zero = get_zero(n); e = ctx.mk_enode(n, false, false, true); v = mk_var(e); // internalizer is marking enodes as interpreted whenever the associated ast is a value and a constant. // e->mark_as_interpreted(); numeral k(r); // v = k: v - zero <= k, zero - v <= - k m_graph.enable_edge(m_graph.add_edge(zero, v, k, null_literal)); m_graph.enable_edge(m_graph.add_edge(v, zero, -k, null_literal)); } return v; } template theory_var theory_diff_logic::mk_var(enode* n) { mark_as_modified_since_eq_prop(); theory_var v = theory::mk_var(n); TRACE("diff_logic_vars", tout << "mk_var: " << v << "\n";); m_graph.init_var(v); get_context().attach_th_var(n, this, v); return v; } template bool theory_diff_logic::is_interpreted(app* n) const { return n->get_family_id() == get_family_id(); } template theory_var theory_diff_logic::mk_var(app* n) { context & ctx = get_context(); enode* e = 0; theory_var v = null_theory_var; if (ctx.e_internalized(n)) { e = ctx.get_enode(n); v = e->get_th_var(get_id()); } else { ctx.internalize(n, false); e = ctx.get_enode(n); } if (v == null_theory_var) { v = mk_var(e); } if (is_interpreted(n)) { found_non_diff_logic_expr(n); } TRACE("arith", tout << mk_pp(n, get_manager()) << " |-> " << v << "\n";); return v; } template void theory_diff_logic::reset_eh() { for (unsigned i = 0; i < m_atoms.size(); ++i) { dealloc(m_atoms[i]); } m_graph .reset(); m_zero_int = null_theory_var; m_zero_real = null_theory_var; m_atoms .reset(); m_asserted_atoms .reset(); m_stats .reset(); m_scopes .reset(); m_modified_since_eq_prop = false; m_asserted_qhead = 0; m_num_core_conflicts = 0; m_num_propagation_calls = 0; m_agility = 0.5; m_is_lia = true; m_non_diff_logic_exprs = false; theory::reset_eh(); } template bool theory_diff_logic::propagate_cheap_equalities() { bool result = false; TRACE("dl_new_eq", get_context().display(tout);); context& ctx = get_context(); region& reg = ctx.get_region(); SASSERT(m_eq_prop_info_set.empty()); SASSERT(m_eq_prop_infos.empty()); if (m_modified_since_eq_prop) { m_graph.compute_zero_edge_scc(m_scc_id); int n = get_num_vars(); for (theory_var v = 0; v < n; v++) { rational delta_r; theory_var x_v = expand(true, v, delta_r); numeral delta(delta_r); int scc_id = m_scc_id[x_v]; if (scc_id != -1) { delta += m_graph.get_assignment(x_v); TRACE("eq_scc", tout << v << " " << x_v << " " << scc_id << " " << delta << "\n";); eq_prop_info info(scc_id, delta); typename eq_prop_info_set::entry * entry = m_eq_prop_info_set.find_core(&info); if (entry == 0) { eq_prop_info * new_info = alloc(eq_prop_info, scc_id, delta, v); m_eq_prop_info_set.insert(new_info); m_eq_prop_infos.push_back(new_info); } else { // new equality found theory_var r = entry->get_data()->get_root(); enode * n1 = get_enode(v); enode * n2 = get_enode(r); if (n1->get_root() != n2->get_root()) { // r may be an alias (i.e., it is not realy in the graph). So, I should expand it. // nsb: ?? rational r_delta; theory_var x_r = expand(true, r, r_delta); justification* j = new (reg) implied_eq_justification(*this, x_v, x_r, m_graph.get_timestamp()); (void)j; m_stats.m_num_th2core_eqs++; // TBD: get equality into core. NOT_IMPLEMENTED_YET(); // new_eq_eh(x_v, x_r, *j); result = true; } } } } m_eq_prop_info_set.reset(); std::for_each(m_eq_prop_infos.begin(), m_eq_prop_infos.end(), delete_proc()); m_eq_prop_infos.reset(); unmark_as_modified_since_eq_prop(); } TRACE("dl_new_eq", get_context().display(tout);); SASSERT(!m_modified_since_eq_prop); return result; } template void theory_diff_logic::compute_delta() { m_delta = rational(1); unsigned num_edges = m_graph.get_num_edges(); for (unsigned i = 0; i < num_edges; ++i) { if (!m_graph.is_enabled(i)) { continue; } numeral w = m_graph.get_weight(i); dl_var tgt = m_graph.get_target(i); dl_var src = m_graph.get_source(i); rational n_x = m_graph.get_assignment(tgt).get_rational().to_rational(); rational k_x = m_graph.get_assignment(tgt).get_infinitesimal().to_rational(); rational n_y = m_graph.get_assignment(src).get_rational().to_rational(); rational k_y = m_graph.get_assignment(src).get_infinitesimal().to_rational(); rational n_c = w.get_rational().to_rational(); rational k_c = w.get_infinitesimal().to_rational(); TRACE("epsilon", tout << "(n_x,k_x): " << n_x << ", " << k_x << ", (n_y,k_y): " << n_y << ", " << k_y << ", (n_c,k_c): " << n_c << ", " << k_c << "\n";); if (n_x < n_y + n_c && k_x > k_y + k_c) { rational new_delta = (n_y + n_c - n_x) / (k_x - k_y - k_c); if (new_delta < m_delta) { TRACE("epsilon", tout << "new delta: " << new_delta << "\n";); m_delta = new_delta; } } } } template void theory_diff_logic::init_model(smt::model_generator & m) { m_factory = alloc(arith_factory, get_manager()); m.register_factory(m_factory); compute_delta(); } template model_value_proc * theory_diff_logic::mk_value(enode * n, model_generator & mg) { theory_var v = n->get_th_var(get_id()); SASSERT(v != null_theory_var); numeral val = m_graph.get_assignment(v); rational num = val.get_rational().to_rational() + m_delta * val.get_infinitesimal().to_rational(); return alloc(expr_wrapper_proc, m_factory->mk_value(num, m_util.is_int(n->get_owner()))); } template bool theory_diff_logic::validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const { NOT_IMPLEMENTED_YET(); return true; } template void theory_diff_logic::display(std::ostream & out) const { for (unsigned i = 0; i < m_atoms.size(); ++i) { m_atoms[i]->display(*this, out); } m_graph.display(out); } template bool theory_diff_logic::is_consistent() const { context& ctx = get_context(); for (unsigned i = 0; i < m_atoms.size(); ++i) { atom* a = m_atoms[i]; bool_var bv = a->get_bool_var(); lbool asgn = ctx.get_assignment(bv); if (ctx.is_relevant(ctx.bool_var2expr(bv)) && asgn != l_undef) { SASSERT((asgn == l_true) == a->is_true()); switch(a->kind()) { case LE_ATOM: { le_atom* le = dynamic_cast(a); int edge_id = le->get_asserted_edge(); SASSERT(m_graph.is_enabled(edge_id)); SASSERT(m_graph.is_feasible(edge_id)); break; } case EQ_ATOM: { eq_atom* ea = dynamic_cast(a); bool_var bv1 = ctx.get_bool_var(ea->get_le()); bool_var bv2 = ctx.get_bool_var(ea->get_ge()); lbool val1 = ctx.get_assignment(bv1); lbool val2 = ctx.get_assignment(bv2); if (asgn == l_true) { SASSERT(val1 == l_true); SASSERT(val2 == l_true); } else { SASSERT(val1 == l_false || val2 == l_false); } break; } } } } return m_graph.is_feasible(); } template theory_var theory_diff_logic::expand(bool pos, theory_var v, rational & k) { context& ctx = get_context(); enode* e = get_enode(v); rational r; for (;;) { app* n = e->get_owner(); if (m_util.is_add(n) && n->get_num_args() == 2) { app* x = to_app(n->get_arg(0)); app* y = to_app(n->get_arg(1)); if (m_util.is_numeral(x, r)) { e = ctx.get_enode(y); } else if (m_util.is_numeral(y, r)) { e = ctx.get_enode(x); } v = e->get_th_var(get_id()); SASSERT(v != null_theory_var); if (v == null_theory_var) { break; } if (pos) { k += r; } else { k -= r; } } else { break; } } return v; } template void theory_diff_logic::new_eq_or_diseq(bool is_eq, theory_var v1, theory_var v2, justification& eq_just) { rational k; theory_var s = expand(true, v1, k); theory_var t = expand(false, v2, k); context& ctx = get_context(); ast_manager& m = get_manager(); if (s == t) { if (is_eq != k.is_zero()) { // conflict 0 /= k; inc_conflicts(); ctx.set_conflict(&eq_just); } } else { // // Create equality ast, internalize_atom // assign the corresponding equality literal. // mark_as_modified_since_eq_prop(); app_ref eq(m), s2(m), t2(m); app* s1 = get_enode(s)->get_owner(); app* t1 = get_enode(t)->get_owner(); s2 = m_util.mk_sub(t1, s1); t2 = m_util.mk_numeral(k, m.get_sort(s2.get())); // t1 - s1 = k eq = m.mk_eq(s2.get(), t2.get()); TRACE("diff_logic", tout << v1 << " .. " << v2 << "\n"; tout << mk_pp(eq.get(), m) <<"\n";); if (!internalize_atom(eq.get(), false)) { UNREACHABLE(); } literal l(ctx.get_literal(eq.get())); if (!is_eq) { l = ~l; } ctx.assign(l, b_justification(&eq_just), false); } } template void theory_diff_logic::new_eq_eh( theory_var v1, theory_var v2, justification& j) { m_stats.m_num_core2th_eqs++; new_eq_or_diseq(true, v1, v2, j); } template void theory_diff_logic::new_diseq_eh( theory_var v1, theory_var v2, justification& j) { m_stats.m_num_core2th_diseqs++; new_eq_or_diseq(false, v1, v2, j); } template void theory_diff_logic::new_eq_eh(theory_var v1, theory_var v2) { m_arith_eq_adapter.new_eq_eh(v1, v2); } template void theory_diff_logic::new_diseq_eh(theory_var v1, theory_var v2) { m_arith_eq_adapter.new_diseq_eh(v1, v2); } template void theory_diff_logic::relevant_eh(app* e) { } struct imp_functor { conflict_resolution & m_cr; imp_functor(conflict_resolution& cr) : m_cr(cr) {} void operator()(literal l) { m_cr.mark_literal(l); } }; template void theory_diff_logic::get_eq_antecedents( theory_var v1, theory_var v2, unsigned timestamp, conflict_resolution & cr) { imp_functor functor(cr); bool r; r = m_graph.find_shortest_zero_edge_path(v1, v2, timestamp, functor); SASSERT(r); r = m_graph.find_shortest_zero_edge_path(v2, v1, timestamp, functor); SASSERT(r); } template void theory_diff_logic::get_implied_bound_antecedents(edge_id bridge_edge, edge_id subsumed_edge, conflict_resolution & cr) { imp_functor f(cr); m_graph.explain_subsumed_lazy(bridge_edge, subsumed_edge, f); } #endif /* _THEORY_DIFF_LOGIC_DEF_H_ */