/*++ Copyright (c) 2011 Microsoft Corporation Module Name: polynomial_factorization.cpp Abstract: Implementation of polynomial factorization. Author: Dejan (t-dejanj) 2011-11-15 Notes: [1] Elwyn Ralph Berlekamp. Factoring Polynomials over Finite Fields. Bell System Technical Journal, 46(8-10):1853-1859, 1967. [2] Donald Ervin Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms. Addison Wesley, third edition, 1997. [3] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Verlag, 1993. --*/ #include "util/trace.h" #include "util/util.h" #include "math/polynomial/upolynomial_factorization_int.h" #include "util/prime_generator.h" using namespace std; namespace upolynomial { // get the prime as unsigned while throwing exceptions if anything goes bad` unsigned get_p_from_manager(zp_numeral_manager const & zp_nm) { z_numeral_manager & nm = zp_nm.m(); numeral const & p = zp_nm.p(); if (!nm.is_uint64(p)) { throw upolynomial_exception("The prime number attempted in factorization is too big!"); } uint64_t p_uint64 = nm.get_uint64(p); unsigned p_uint = static_cast(p_uint64); if (((uint64_t)p_uint) != p_uint64) { throw upolynomial_exception("The prime number attempted in factorization is too big!"); } return p_uint; } /** \brief The Q-I matrix from Berelkamp's algorithm [1,2]. Given a polynomial f = \sum f_k x^k of degree n, with f_i in Z_p[x], the i-th row of Q is a representation of x^(p*i) modulo f, i.e. x^(p*i) modulo f = \sum_j q[i][j] x^j If f is of degree n, the matrix is square nxn. When the this matrix is constructed we obtain Q - I, because this is what we need in the algorithm. After construction, the null space vectors can be extracted one-by one using the next_null_space_vector method. */ class berlekamp_matrix { zp_manager & m_upm; mpzzp_manager & m_zpm; svector m_matrix; unsigned m_size; unsigned m_null_row; // 0, ..., m_size - 1, state for null vectors svector m_column_pivot; // position of pivots in the columns svector m_row_pivot; // position of pivots in the rows mpz & get(unsigned i, unsigned j) { SASSERT(i < m_size && j < m_size); return m_matrix[i*m_size + j]; } mpz const & get(unsigned i, unsigned j) const { SASSERT(i < m_size && j < m_size); return m_matrix[i*m_size + j]; } public: /** \brief Construct the matrix as explained above, f should be in the Z_p. */ berlekamp_matrix(zp_manager & upm, numeral_vector const & f) : m_upm(upm), m_zpm(upm.m()), m_size(m_upm.degree(f)), m_null_row(1), m_column_pivot(m_size, -1), m_row_pivot(m_size, -1) { unsigned p = get_p_from_manager(m_zpm); TRACE("polynomial::factorization::bughunt", tout << "polynomial::berlekamp_matrix("; m_upm.display(tout, f); tout << ", " << p << ")" << endl;); // the first row is always the vector [1, 0, ..., 0], since x^0 = 0 (modulo f) m_matrix.push_back(1); for (unsigned j = 0; j < m_size; ++ j) { m_matrix.push_back(0); } // the rest of the rows, we can get as follows, given f = x^n + f_{n-1} x^{n-1} + ... + f_1 x + f_0 // if x^k = \sum a_{k,j} x^j (modulo p), hence 0 <= j <= n-1 then // x^{k+1} = a_{k,n-1}(-f_{n-1} x^{n-1} + ... + f_0) + a_{k,n-2} x^{n-1} + ... + a_{k, 0} x // so we can compute a_{k+1,j} = a_{k, j-1} - a_{k,n-1}*f_j // every p-th row we add to the matrix scoped_numeral tmp(m_zpm); unsigned row = 0, previous_row = 0; for (unsigned k = 1; true; previous_row = row, ++ k) { // add another row if we need it if (k % p == 1) { if (++ row >= m_size) { break; } for (unsigned j = 0; j < m_size; ++ j) { m_matrix.push_back(0); } } // the multiplier m_zpm.set(tmp, get(previous_row, m_size - 1)); // go down the row and shift it for (unsigned j = m_size - 1; j > 0; -- j) { m_zpm.submul(get(previous_row, j-1), tmp, f[j], get(row, j)); } // add the 0 element (same formula with a_{k,-1} = 0) m_zpm.mul(f[0], tmp, get(row, 0)); m_zpm.neg(get(row, 0)); } // do Q - I for (unsigned i = 0; i < m_size; ++ i) { m_zpm.dec(get(i, i)); } TRACE("polynomial::factorization::bughunt", tout << "polynomial::berlekamp_matrix():" << endl; display(tout); tout << endl;); } /** \brief Destructor, just removing the numbers */ ~berlekamp_matrix() { for (unsigned k = 0; k < m_matrix.size(); ++ k) { m_zpm.del(m_matrix[k]); } } /** \brief 'Diagonalizes' the matrix using only column operations. The resulting matrix will have -1 at pivot elements. Returns the rank of the null space. */ unsigned diagonalize() { scoped_numeral multiplier(m_zpm); unsigned null_rank = 0; for (unsigned i = 0; i < m_size; ++ i) { // get the first non-zero entry in the m_null_row row bool column_found = false; for (unsigned j = 0; j < m_size; ++ j) { if (m_column_pivot[j] < 0 && !m_zpm.is_zero(get(i, j))) { column_found = true; m_column_pivot[j] = i; m_row_pivot[i] = j; // found a pivot, to make it -1 we compute the multiplier -p^-1 m_zpm.set(multiplier, get(i, j)); m_zpm.inv(multiplier); m_zpm.neg(multiplier); // multiply the pivot column with the multiplier for (unsigned k = m_null_row; k < m_size; ++ k) { m_zpm.mul(get(k, j), multiplier, get(k, j)); } // pivot is -1 so we can add it to the rest of the columns to eliminate the row for (unsigned other_j = 0; other_j < m_size; ++ other_j) { if (j != other_j) { m_zpm.set(multiplier, get(i, other_j)); for (unsigned k = m_null_row; k < m_size; ++ k) { m_zpm.addmul(get(k, other_j), multiplier, get(k, j), get(k, other_j)); } } } } } if (!column_found) { null_rank ++; } } TRACE("polynomial::factorization::bughunt", tout << "polynomial::diagonalize():" << endl; display(tout); tout << endl;); return null_rank; } /** If rank of the matrix is n - r, we are interested in linearly independent vectors v_1, ..., v_r (the basis of the null space), such that v_k A = 0. This method will give one at a time. The method returns true if vector has been computed properly. The first vector [1, 0, ..., 0] is ignored (m_null_row starts from 1). */ bool next_null_space_vector(numeral_vector & v) { SASSERT(v.size() <= m_size); v.resize(m_size); for (; m_null_row < m_size; ++ m_null_row) { if (m_row_pivot[m_null_row] < 0) { // output the vector for (unsigned j = 0; j < m_size; ++ j) { if (m_row_pivot[j] >= 0) { m_zpm.set(v[j], get(m_null_row, m_row_pivot[j])); } else { if (j == m_null_row) { m_zpm.set(v[j], 1); } else { m_zpm.set(v[j], 0); } } } ++ m_null_row; return true; } } // didn't find the vector return false; } /** \brief Display the matrix on the output stream. */ void display(std::ostream & out) const { for (unsigned i = 0; i < m_matrix.size() / m_size; ++ i) { for (unsigned j = 0; j < m_size; ++ j) { out << m_zpm.to_string(get(i, j)) << "\t"; } out << endl; } } }; /** See [3] p. 125. */ void zp_square_free_factor(zp_manager & upm, numeral_vector const & f, zp_factors & sq_free_factors) { zp_numeral_manager & nm = upm.m(); unsigned p = get_p_from_manager(upm.m()); TRACE("polynomial::factorization", tout << "polynomial::square_free_factor("; upm.display(tout, f); tout << ") over Z_" << p << endl;); scoped_numeral_vector div_tmp(nm); // [initialize] T_0 = f, e = 1 // trim and get the make it monic if not already SASSERT(f.size() > 1); scoped_numeral_vector T_0(nm); upm.set(f.size(), f.c_ptr(), T_0); scoped_numeral constant(nm); upm.mk_monic(T_0.size(), T_0.c_ptr(), constant); sq_free_factors.set_constant(constant); TRACE("polynomial::factorization::bughunt", tout << "Initial factors: " << sq_free_factors << endl; tout << "R. = GF(" << p << ")['x']" << endl; tout << "T_0 = "; upm.display(tout, T_0); tout << endl; ); unsigned e = 1; // we repeat until we get a constant scoped_numeral_vector T_0_d(nm); scoped_numeral_vector T(nm); scoped_numeral_vector V(nm); scoped_numeral_vector W(nm); scoped_numeral_vector A_ek(nm); while (T_0.size() > 1) { // [initialize e-loop] T = gcd(T_0, T_0'), V / T_0/T, k = 0 unsigned k = 0; TRACE("polynomial::factorization::bughunt", tout << "k = 0" << endl;); // T_0_d = T_0' upm.derivative(T_0.size(), T_0.c_ptr(), T_0_d); TRACE("polynomial::factorization::bughunt", tout << "T_0_d = T_0.derivative(x)" << endl; tout << "T_0_d == "; upm.display(tout, T_0_d); tout << endl; ); // T = gcd(T_0, T_0') upm.gcd(T_0.size(), T_0.c_ptr(), T_0_d.size(), T_0_d.c_ptr(), T); TRACE("polynomial::factorization::bughunt", tout << "T = T_0.gcd(T_0_d)" << endl; tout << "T == "; upm.display(tout, T); tout << endl; ); // V = T_0 / T upm.div(T_0.size(), T_0.c_ptr(), T.size(), T.c_ptr(), V); TRACE("polynomial::factorization::bughunt", tout << "V = T_0.quo_rem(T)[0]" << endl; tout << "V == "; upm.display(tout, V); tout << endl; ); while (V.size() > 1) { // [special case] if ((++k) % p == 0) { ++ k; // T = T/V upm.div(T.size(), T.c_ptr(), V.size(), V.c_ptr(), T); TRACE("polynomial::factorization::bughunt", tout << "T = T.quo_rem(V)[0]" << endl; tout << "T == "; upm.display(tout, T); tout << endl; ); } // [compute A_ek] // W = gcd(T, V) upm.gcd(T.size(), T.c_ptr(), V.size(), V.c_ptr(), W); TRACE("polynomial::factorization::bughunt", tout << "W = T.gcd(V)" << endl; upm.display(tout, W); tout << endl; ); // A_ek = V/W upm.div(V.size(), V.c_ptr(), W.size(), W.c_ptr(), A_ek); TRACE("polynomial::factorization::bughunt", tout << "A_ek = V.quo_rem(W)[0]" << endl; tout << "A_ek == "; upm.display(tout, A_ek); tout << endl; ); // V = W V.swap(W); TRACE("polynomial::factorization::bughunt", tout << "V = W" << endl; tout << "V == "; upm.display(tout, V); tout << endl; ); // T = T/V upm.div(T.size(), T.c_ptr(), V.size(), V.c_ptr(), T); TRACE("polynomial::factorization::bughunt", tout << "T = T.quo_rem(V)[0]" << endl; tout << "T == "; upm.display(tout, T); tout << endl; ); // if not constant, we output it if (A_ek.size() > 1) { TRACE("polynomial::factorization::bughunt", tout << "Factor: ("; upm.display(tout, A_ek); tout << ")^" << e*k << endl;); sq_free_factors.push_back(A_ek, e*k); } } // [finished e-loop] T_0 = \sum_{p div j} t_j x^j, set T_0 \sum_{p div j} t_j x^{j/p}, e = pe e *= p; T_0.reset(); for (unsigned deg_p = 0; deg_p < T.size(); deg_p += p) { T_0.push_back(numeral()); nm.set(T_0.back(), T[deg_p]); } TRACE("polynomial::factorization::bughunt", tout << "T_0 = "; upm.display(tout, T_0); tout << endl; ); } TRACE("polynomial::factorization", tout << "polynomial::square_free_factor("; upm.display(tout, f); tout << ") => " << sq_free_factors << endl;); } bool zp_factor(zp_manager & upm, numeral_vector const & f, zp_factors & factors) { TRACE("polynomial::factorization", unsigned p = get_p_from_manager(upm.m()); tout << "polynomial::factor("; upm.display(tout, f); tout << ") over Z_" << p << endl;); // get the sq-free parts (all of them will be monic) zp_factors sq_free_factors(upm); zp_square_free_factor(upm, f, sq_free_factors); // factor the sq-free parts individually for (unsigned i = 0; i < sq_free_factors.distinct_factors(); ++ i) { unsigned j = factors.distinct_factors(); if (upm.degree(sq_free_factors[i]) > 1) { zp_factor_square_free(upm, sq_free_factors[i], factors); // monic from aq-free decomposition for (; j < factors.distinct_factors(); ++ j) { factors.set_degree(j, sq_free_factors.get_degree(i)*factors.get_degree(j)); } } else { factors.push_back(sq_free_factors[i], sq_free_factors.get_degree(i)); } } // add the constant factors.set_constant(sq_free_factors.get_constant()); TRACE("polynomial::factorization", tout << "polynomial::factor("; upm.display(tout, f); tout << ") => " << factors << endl;); return factors.total_factors() > 1; } bool zp_factor_square_free(zp_manager & upm, numeral_vector const & f, zp_factors & factors) { return zp_factor_square_free_berlekamp(upm, f, factors, false); } bool zp_factor_square_free_berlekamp(zp_manager & upm, numeral_vector const & f, zp_factors & factors, bool randomized) { SASSERT(upm.degree(f) > 1); mpzzp_manager & zpm = upm.m(); unsigned p = get_p_from_manager(zpm); TRACE("polynomial::factorization", tout << "upolynomial::factor_square_free_berlekamp("; upm.display(tout, f); tout << ", " << p << ")" << endl;); SASSERT(zpm.is_one(f.back())); // construct the berlekamp Q matrix to get the null space berlekamp_matrix Q_I(upm, f); // copy the initial polynomial to factors unsigned first_factor = factors.distinct_factors(); factors.push_back(f, 1); // rank of the null-space (and the number of factors) unsigned r = Q_I.diagonalize(); if (r == 1) { // since r == 1 == number of factors, then f is irreducible TRACE("polynomial::factorization", tout << "upolynomial::factor_square_free_berlekamp("; upm.display(tout, f); tout << ", " << p << ") => " << factors << endl;); return false; } TRACE("polynomial::factorization::bughunt", tout << "upolynomial::factor_square_free_berlekamp(): computing factors, expecting " << r << endl;); scoped_numeral_vector gcd(zpm); scoped_numeral_vector div(zpm); // process the null space vectors (skip first one, it's [1, 0, ..., 0]) while generating the factors unsigned d = upm.degree(f); (void)d; scoped_numeral_vector v_k(zpm); while (Q_I.next_null_space_vector(v_k)) { TRACE("polynomial::factorization::bughunt", tout << "null vector: "; for(unsigned j = 0; j < d; ++ j) { tout << zpm.to_string(v_k[j]) << " "; } tout << endl; ); upm.trim(v_k); // TRACE("polynomial::factorization", tout << "v_k = "; upm.display(tout, v_k); tout << endl;); unsigned current_factor_end = factors.distinct_factors(); for (unsigned current_factor_i = first_factor; current_factor_i < current_factor_end; ++ current_factor_i) { // we have v such that vQ = v, viewing v as a polynomial, we get that v^n - v = 0 (mod f) // since v^n -v = v*(v-1)*...*(v - p-1) we compute the gcd(v - s, f) to extract the // factors. it also holds that g = \prod gcd(v - s, f), so we just accumulate them // if it's of degree 1, we're done (have to index the array as we are adding to it), as if (factors[current_factor_i].size() == 2) { continue; } for (unsigned s = 0; s < p; ++ s) { numeral_vector const & current_factor = factors[current_factor_i]; // we just take one off v_k each time to get all of them zpm.dec(v_k[0]); // get the gcd upm.gcd(v_k.size(), v_k.c_ptr(), current_factor.size(), current_factor.c_ptr(), gcd); // if the gcd is 1, or the gcd is f, we just ignore it if (gcd.size() != 1 && gcd.size() != current_factor.size()) { // get the divisor also (no need to normalize the div, both are monic) upm.div(current_factor.size(), current_factor.c_ptr(), gcd.size(), gcd.c_ptr(), div); TRACE("polynomial::factorization::bughunt", tout << "current_factor = "; upm.display(tout, current_factor); tout << endl; tout << "gcd_norm = "; upm.display(tout, gcd); tout << endl; tout << "div = "; upm.display(tout, div); tout << endl; ); // continue with the rest factors.swap_factor(current_factor_i, div); // add the new factor(s) factors.push_back(gcd, 1); } // at the point where we have all the factors, we are done if (factors.distinct_factors() - first_factor == r) { TRACE("polynomial::factorization", tout << "polynomial::factor("; upm.display(tout, f); tout << ", " << p << ") => " << factors << " of degree " << factors.get_degree() << endl;); return true; } } } } // should never get here SASSERT(false); return true; } /** Check if the hensel lifting was correct, i.e. that C = A*B (mod br). */ bool check_hansel_lift(z_manager & upm, numeral_vector const & C, numeral const & a, numeral const & b, numeral const & r, numeral_vector const & A, numeral_vector const & B, numeral_vector const & A_lifted, numeral_vector const & B_lifted) { z_numeral_manager & nm = upm.zm(); scoped_mpz br(nm); nm.mul(b, r, br); zp_manager br_upm(upm.lim(), upm.zm()); br_upm.set_zp(br); if (A_lifted.size() != A.size()) return false; if (B_lifted.size() != B.size()) return false; if (!nm.eq(A.back(), A_lifted.back())) return false; // test1: check that C = A_lifted * B_lifted (mod b*r) scoped_mpz_vector test1(nm); upm.mul(A_lifted.size(), A_lifted.c_ptr(), B_lifted.size(), B_lifted.c_ptr(), test1); upm.sub(C.size(), C.c_ptr(), test1.size(), test1.c_ptr(), test1); to_zp_manager(br_upm, test1); if (!test1.empty()) { TRACE("polynomial::factorization::bughunt", tout << "sage: R. = ZZ['x']" << endl; tout << "sage: A = "; upm.display(tout, A); tout << endl; tout << "sage: B = "; upm.display(tout, B); tout << endl; tout << "sage: C = "; upm.display(tout, C); tout << endl; tout << "sage: test1 = C - AB" << endl; tout << "sage: print test1.change_ring(GF(" << nm.to_string(br) << "))" << endl; tout << "sage: print 'expected 0'" << endl; ); return false; } zp_manager b_upm(upm.lim(), nm); b_upm.set_zp(b); // test2: A_lifted = A (mod b) scoped_mpz_vector test2a(nm), test2b(nm); to_zp_manager(b_upm, A, test2a); to_zp_manager(b_upm, A_lifted, test2b); if (!upm.eq(test2a, test2b)) { return false; } // test3: B_lifted = B (mod b) scoped_mpz_vector test3a(nm), test3b(nm); to_zp_manager(b_upm, B, test3a); to_zp_manager(b_upm, B_lifted, test3b); if (!upm.eq(test3a, test3b)) { return false; } return true; } /** Performs a Hensel lift of A and B in Z_a to Z_b, where p is prime and a = p^{a_k}, b = p^{b_k}, r = (a, b), with the following assumptions: (1) UA + VB = 1 (mod a) (2) C = A*B (mod b) (3) (l(A), r) = 1 (important in order to divide by A, i.e. to invert l(A)) (4) deg(A) + deg(B) = deg(C) The output of is two polynomials A1, B1 such that A1 = A (mod b), B1 = B (mod b), l(A1) = l(A), deg(A1) = deg(A), deg(B1) = deg(B) and C = A1 B1 (mod b*r). Such A1, B1 are unique if r is prime. See [3] p. 138. */ void hensel_lift(z_manager & upm, numeral const & a, numeral const & b, numeral const & r, numeral_vector const & U, numeral_vector const & A, numeral_vector const & V, numeral_vector const & B, numeral_vector const & C, numeral_vector & A_lifted, numeral_vector & B_lifted) { z_numeral_manager & nm = upm.zm(); TRACE("polynomial::factorization::bughunt", tout << "polynomial::hensel_lift("; tout << "a = " << nm.to_string(a) << ", "; tout << "b = " << nm.to_string(b) << ", "; tout << "r = " << nm.to_string(r) << ", "; tout << "U = "; upm.display(tout, U); tout << ", "; tout << "A = "; upm.display(tout, A); tout << ", "; tout << "V = "; upm.display(tout, V); tout << ", "; tout << "B = "; upm.display(tout, B); tout << ", "; tout << "C = "; upm.display(tout, C); tout << ")" << endl; ); zp_manager r_upm(upm.lim(), nm); r_upm.set_zp(r); SASSERT(upm.degree(C) == upm.degree(A) + upm.degree(B)); SASSERT(upm.degree(U) < upm.degree(B) && upm.degree(V) < upm.degree(A)); // by (2) C = AB (mod b), hence (C - AB) is divisible by b // define thus let f = (C - AB)/b in Z_r scoped_numeral_vector f(upm.m()); upm.mul(A.size(), A.c_ptr(), B.size(), B.c_ptr(), f); upm.sub(C.size(), C.c_ptr(), f.size(), f.c_ptr(), f); upm.div(f, b); to_zp_manager(r_upm, f); TRACE("polynomial::factorization", tout << "f = "; upm.display(tout, f); tout << endl; ); // we need to get A1 = A (mod b), B1 = B (mode b) so we know that we need // A1 = A + b*S, B1 = B + b*T in Z[x] for some S and T with deg(S) <= deg(A), deg(T) <= deg(B) // we also need (mod b*r) C = A1*B1 = (A + b*S)*(B + b*T) = AB + b(AT + BS) + b^2*ST // if we find S and T, we will have found our A1 and B1 // since r divides b, then b^2 contains b*r and we know that it must be that C = AB + b(AT + BS) (mod b*r) // which is equivalent to // (5) f = (C - AB)/b = AT + BS (mod r) // having (1) AU + BV = 1 (mod r) and (5) AT + BS = f (mod r), we know that // A*(fU) + B*(fV) = f (mod r), i.e. T = fU, S = fV is a solution // but we also know that we need an S with deg(S) <= deg(A) so we can do the following // we know that l(A) is invertible so we can find the exact remainder of fV with A, i.e. find the quotient // t in the division and set // A*(fU + tB) + B*(fV - tA) = f // T = fU + tB, S = fU - tA // since l(A) is invertible in Z_r, we can (in Z_r) use exact division to get Vf = At + R with deg(R) < A // we now know that deg(A+bS) = deg(A), but we also know (4) which will guarantee that deg(B+bT) = deg(B) // compute the S, T (compute in Z_r[x]) scoped_numeral_vector Vf(r_upm.m()), t(r_upm.m()), S(r_upm.m()); TRACE("polynomial::factorization::bughunt", tout << "V == "; upm.display(tout, V); tout << endl; ); r_upm.mul(V.size(), V.c_ptr(), f.size(), f.c_ptr(), Vf); TRACE("polynomial::factorization::bughunt", tout << "Vf = V*f" << endl; tout << "Vf == "; upm.display(tout, Vf); tout << endl; ); r_upm.div_rem(Vf.size(), Vf.c_ptr(), A.size(), A.c_ptr(), t, S); TRACE("polynomial::factorization::bughunt", tout << "[t, S] = Vf.quo_rem(A)" << endl; tout << "t == "; upm.display(tout, t); tout << endl; tout << "S == "; upm.display(tout, S); tout << endl; ); scoped_numeral_vector T(r_upm.m()), tmp(r_upm.m()); r_upm.mul(U.size(), U.c_ptr(), f.size(), f.c_ptr(), T); // T = fU TRACE("polynomial::factorization::bughunt", tout << "T == U*f" << endl; tout << "T == "; upm.display(tout, T); tout << endl; ); r_upm.mul(B.size(), B.c_ptr(), t.size(), t.c_ptr(), tmp); // tmp = Bt TRACE("polynomial::factorization::bughunt", tout << "tmp = B*t" << endl; tout << "tmp == "; upm.display(tout, tmp); tout << endl; ); r_upm.add(T.size(), T.c_ptr(), tmp.size(), tmp.c_ptr(), T); // T = Uf + Bt TRACE("polynomial::factorization::bughunt", tout << "T = B*tmp" << endl; tout << "T == "; upm.display(tout, T); tout << endl; ); // set the result, A1 = A + b*S, B1 = B + b*T (now we compute in Z[x]) upm.mul(S, b); upm.mul(T, b); upm.add(A.size(), A.c_ptr(), S.size(), S.c_ptr(), A_lifted); upm.add(B.size(), B.c_ptr(), T.size(), T.c_ptr(), B_lifted); CASSERT("polynomial::factorizatio::bughunt", check_hansel_lift(upm, C, a, b, r, A, B, A_lifted, B_lifted)); } bool check_quadratic_hensel(zp_manager & zpe_upm, numeral_vector const & U, numeral_vector const & A, numeral_vector const & V, numeral_vector const & B) { z_numeral_manager & nm = zpe_upm.zm(); // compute UA+BV expecting to get 1 (in Z_pe[x]) scoped_mpz_vector tmp1(nm); scoped_mpz_vector tmp2(nm); zpe_upm.mul(U.size(), U.c_ptr(), A.size(), A.c_ptr(), tmp1); zpe_upm.mul(V.size(), V.c_ptr(), B.size(), B.c_ptr(), tmp2); scoped_mpz_vector one(nm); zpe_upm.add(tmp1.size(), tmp1.c_ptr(), tmp2.size(), tmp2.c_ptr(), one); if (one.size() != 1 || !nm.is_one(one[0])) { TRACE("polynomial::factorization::bughunt", tout << "sage: R. = Zmod(" << nm.to_string(zpe_upm.m().p()) << ")['x']" << endl; tout << "sage: A = "; zpe_upm.display(tout, A); tout << endl; tout << "sage: B = "; zpe_upm.display(tout, B); tout << endl; tout << "sage: U = "; zpe_upm.display(tout, U); tout << endl; tout << "sage: V = "; zpe_upm.display(tout, V); tout << endl; tout << "sage: print (1 - UA - VB)" << endl; tout << "sage: print 'expected 0'" << endl; ); return false; } return true; } /** Lift C = A*B from Z_p[x] to Z_{p^e}[x] such that: * A = A_lift (mod p) * B = B_lift (mod p) * C = A*B (mod p^e) */ void hensel_lift_quadratic(z_manager& upm, numeral_vector const & C, zp_manager & zpe_upm, numeral_vector & A, numeral_vector & B, unsigned e) { z_numeral_manager & nm = upm.zm(); TRACE("polynomial::factorization::bughunt", tout << "polynomial::hansel_lift_quadratic("; tout << "A = "; upm.display(tout, A); tout << ", "; tout << "B = "; upm.display(tout, B); tout << ", "; tout << "C = "; upm.display(tout, C); tout << ", "; tout << "p = " << nm.to_string(zpe_upm.m().p()) << ", e = " << e << ")" << endl; ); // we create a new Z_p manager, since we'll be changing the input one zp_manager zp_upm(upm.lim(), nm); zp_upm.set_zp(zpe_upm.m().p()); // get the U, V, such that A*U + B*V = 1 (mod p) scoped_mpz_vector U(nm), V(nm), D(nm); zp_upm.ext_gcd(A.size(), A.c_ptr(), B.size(), B.c_ptr(), U, V, D); SASSERT(D.size() == 1 && zp_upm.m().is_one(D[0])); // we start lifting from (a = p, b = p, r = p) scoped_mpz_vector A_lifted(nm), B_lifted(nm); for (unsigned k = 1; k < e; k *= 2) { upm.checkpoint(); // INVARIANT(a = p^e, b = p^e, r = gcd(a, b) = p^e): // C = AB (mod b), UA + VB = 1 (mod a) // deg(U) < deg(B), dev(V) < deg(A), deg(C) = deg(A) + deg(V) // gcd(l(A), r) = 1 // regular hensel lifting from a to b*r, here from pe -> pk*pk = p^{k*k} numeral const & pe = zpe_upm.m().p(); hensel_lift(upm, pe, pe, pe, U, A, V, B, C, A_lifted, B_lifted); // now we have C = AB (mod b*r) TRACE("polynomial::factorization::bughunt", tout << "A_lifted = "; upm.display(tout, A_lifted); tout << endl; tout << "B_lifted = "; upm.display(tout, B_lifted); tout << endl; tout << "C = "; upm.display(tout, C); tout << endl; ); // we employ similar reasoning as in the regular hansel lemma now // we need to lift UA + VB = 1 (mod a) // since after the lift, we still have UA + VB = 1 (mod a) we know that (1 - UA - VB)/a is in Z[x] // so we can compute g = (1 - UA - VB)/a // we need U1 and V1 such that U1A + V1B = 1 (mod a^2), with U1 = U mod a, V1 = V mod a // hence U1 = U + aS, V1 = V + aT and we need // (U + aS)A + (V + aT)B = 1 (mod a^2) same as // UA + VB + a(SA + TB) = 1 (mod a^2) same as // SA + TB = g (mod a) hence // (gU + tB)A + (gV - tA)B = g (mod a) will be a solution and we pick t such that deg(gV - tA) < deg(A) // compute g scoped_mpz_vector tmp1(nm), g(nm); g.push_back(numeral()); nm.set(g.back(), 1); // g = 1 upm.mul(A_lifted.size(), A_lifted.c_ptr(), U.size(), U.c_ptr(), tmp1); // tmp1 = AU upm.sub(g.size(), g.c_ptr(), tmp1.size(), tmp1.c_ptr(), g); // g = 1 - UA upm.mul(B_lifted.size(), B_lifted.c_ptr(), V.size(), V.c_ptr(), tmp1); // tmp1 = BV upm.sub(g.size(), g.c_ptr(), tmp1.size(), tmp1.c_ptr(), g); // g = 1 - UA - VB upm.div(g, pe); to_zp_manager(zpe_upm, g); TRACE("polynomial::factorization::bughunt", tout << "g = (1 - A_lifted*U - B_lifted*V)/" << nm.to_string(pe) << endl; tout << "g == "; upm.display(tout, g); tout << endl; ); // compute the S, T scoped_mpz_vector S(nm), T(nm), t(nm), tmp2(nm); zpe_upm.mul(g.size(), g.c_ptr(), V.size(), V.c_ptr(), tmp1); // tmp1 = gV zpe_upm.div_rem(tmp1.size(), tmp1.c_ptr(), A.size(), A.c_ptr(), t, T); // T = gV - tA, deg(T) < deg(A) zpe_upm.mul(g.size(), g.c_ptr(), U.size(), U.c_ptr(), tmp1); // tmp1 = gU zpe_upm.mul(t.size(), t.c_ptr(), B.size(), B.c_ptr(), tmp2); // tmp2 = tB zpe_upm.add(tmp1.size(), tmp1.c_ptr(), tmp2.size(), tmp2.c_ptr(), S); // now update U = U + a*S and V = V + a*T upm.mul(S.size(), S.c_ptr(), pe); upm.mul(T.size(), T.c_ptr(), pe); upm.add(U.size(), U.c_ptr(), S.size(), S.c_ptr(), U); upm.add(V.size(), V.c_ptr(), T.size(), T.c_ptr(), V); // deg(V) < deg(A), deg(T) < deg(A) => deg(V') < deg(A) // we go quadratic zpe_upm.m().set_p_sq(); to_zp_manager(zpe_upm, U); to_zp_manager(zpe_upm, V); to_zp_manager(zpe_upm, A_lifted); to_zp_manager(zpe_upm, B_lifted); // at this point we have INVARIANT(a = (p^e)^2, b = (p^e)^2, r = (p^e)^2) A.swap(A_lifted); B.swap(B_lifted); CASSERT("polynomial::factorizatio::bughunt", check_quadratic_hensel(zpe_upm, U, A, V, B)); } } bool check_hensel_lift(z_manager & upm, numeral_vector const & f, zp_factors const & zp_fs, zp_factors const & zpe_fs, unsigned e) { numeral_manager & nm(upm.m()); zp_manager & zp_upm = zp_fs.upm(); zp_manager & zpe_upm = zpe_fs.upm(); numeral const & p = zp_fs.nm().p(); numeral const & pe = zpe_fs.nm().p(); scoped_numeral power(nm); nm.power(p, e, power); if (!nm.ge(pe, power)) { return false; } // check f = lc(f) * zp_fs (mod p) scoped_numeral_vector mult_zp(nm), f_zp(nm); zp_fs.multiply(mult_zp); to_zp_manager(zp_upm, f, f_zp); zp_upm.mul(mult_zp, f_zp.back()); if (!upm.eq(mult_zp, f_zp)) { TRACE("polynomial::factorization::bughunt", tout << "f = "; upm.display(tout, f); tout << endl; tout << "zp_fs = " << zp_fs << endl; tout << "sage: R. = Zmod(" << nm.to_string(p) << ")['x']" << endl; tout << "sage: mult_zp = "; upm.display(tout, mult_zp); tout << endl; tout << "sage: f_zp = "; upm.display(tout, f_zp); tout << endl; tout << "sage: mult_zp == f_zp" << endl; ); return false; } // check individual factors if (zpe_fs.distinct_factors() != zp_fs.distinct_factors()) { return false; } // check f = lc(f) * zpe_fs (mod p^e) scoped_numeral_vector mult_zpe(nm), f_zpe(nm); zpe_fs.multiply(mult_zpe); to_zp_manager(zpe_upm, f, f_zpe); zpe_upm.mul(mult_zpe, f_zpe.back()); if (!upm.eq(mult_zpe, f_zpe)) { TRACE("polynomial::factorization::bughunt", tout << "f = "; upm.display(tout, f); tout << endl; tout << "zpe_fs = " << zpe_fs << endl; tout << "sage: R. = Zmod(" << nm.to_string(pe) << ")['x']" << endl; tout << "sage: mult_zpe = "; upm.display(tout, mult_zpe); tout << endl; tout << "sage: f_zpe = "; upm.display(tout, f_zpe); tout << endl; tout << "sage: mult_zpe == f_zpe" << endl; ); return false; } return true; } bool check_individual_lift(zp_manager & zp_upm, numeral_vector const & A_p, zp_manager & zpe_upm, numeral_vector const & A_pe) { scoped_numeral_vector A_pe_p(zp_upm.m()); to_zp_manager(zp_upm, A_pe, A_pe_p); if (!zp_upm.eq(A_p, A_pe_p)) { return false; } return true; } void hensel_lift(z_manager & upm, numeral_vector const & f, zp_factors const & zp_fs, unsigned e, zp_factors & zpe_fs) { SASSERT(zp_fs.total_factors() > 0); zp_numeral_manager & zp_nm = zp_fs.nm(); zp_manager & zp_upm = zp_fs.upm(); z_numeral_manager & nm = zp_nm.m(); SASSERT(nm.is_one(zp_fs.get_constant())); zp_numeral_manager & zpe_nm = zpe_fs.nm(); zp_manager & zpe_upm = zpe_fs.upm(); zpe_nm.set_zp(zp_nm.p()); TRACE("polynomial::factorization::bughunt", tout << "polynomial::hansel_lift("; upm.display(tout, f); tout << ", " << zp_fs << ")" << endl; ); // lift the factors one by one scoped_mpz_vector A(nm), B(nm), C(nm), f_parts(nm); // these will all be in Z_p // copy of f, that we'll be cutting parts of upm.set(f.size(), f.c_ptr(), f_parts); // F_k are factors mod Z_p, A_k the factors mod p^e // the invariant we keep is that: // (1) f_parts = C = lc(f) * \prod_{k = i}^n F_k, C in Z_p[x] // (2) A_k = F_k (mod p), for k < i // (3) f = (\prod_{k < i} A_k) * f_parts (mod p^e) for (int i = 0, i_end = zp_fs.distinct_factors()-1; i < i_end; ++ i) { SASSERT(zp_fs.get_degree(i) == 1); // p was chosen so that f is square-free // F_i = A (mod Z_p) zp_upm.set(zp_fs[i].size(), zp_fs[i].c_ptr(), A); TRACE("polynomial::factorization::bughunt", tout << "A = "; upm.display(tout, A); tout << endl; ); // C = f_parts (mod Z_p) if (i > 0) { to_zp_manager(zp_upm, f_parts, C); } else { // first time around, we don't have p^e yet, so first time we just compute C zp_fs.multiply(C); scoped_mpz lc(nm); zp_nm.set(lc, f.back()); zp_upm.mul(C, lc); } TRACE("polynomial::factorization::bughunt", tout << "C = "; upm.display(tout, C); tout << endl; ); // we take B to be what's left from C and A zp_upm.div(C.size(), C.c_ptr(), A.size(), A.c_ptr(), B); TRACE("polynomial::factorization::bughunt", tout << "B = "; upm.display(tout, B); tout << endl; ); // lift A and B to p^e (this will change p^e and put it zp_upm) zpe_nm.set_zp(zp_nm.p()); hensel_lift_quadratic(upm, f_parts, zpe_upm, A, B, e); CASSERT("polynomial::factorizatio::bughunt", check_individual_lift(zp_upm, zp_fs[i], zpe_upm, A)); TRACE("polynomial::factorization", tout << "lifted to " << nm.to_string(zpe_upm.m().p()) << endl; tout << "A = "; upm.display(tout, A); tout << endl; tout << "B = "; upm.display(tout, B); tout << endl; ); // if this is the first time round, we also construct f_parts (now we have correct p^e) if (i == 0) { to_zp_manager(zpe_upm, f, f_parts); } // take the lifted A out of f_parts zpe_upm.div(f_parts.size(), f_parts.c_ptr(), A.size(), A.c_ptr(), f_parts); // add the lifted factor (kills A) zpe_fs.push_back_swap(A, 1); } // we have one last factor, but it also contains lc(f), so take it out scoped_mpz lc_inv(nm); zpe_nm.set(lc_inv, f.back()); zpe_nm.inv(lc_inv); zpe_upm.mul(B, lc_inv); zpe_fs.push_back_swap(B, 1); TRACE("polynomial::factorization::bughunt", tout << "polynomial::hansel_lift("; upm.display(tout, f); tout << ", " << zp_fs << ") => " << zpe_fs << endl; ); CASSERT("polynomial::factorizatio::bughunt", check_hensel_lift(upm, f, zp_fs, zpe_fs, e)); } // get a bound on B for the factors of f with degree less or equal to deg(f)/2 // and then choose e to be smallest such that p^e > 2*lc(f)*B, we use the mignotte // // from [3, pg 134] // |p| = sqrt(\sum |p_i|^2). If a = \sum a_i x^i, b = \sum b_j, deg b = n, and b divides a, then for all j // // |b_j| <= (n-1 over j)|a| + (n-1 over j-1)|lc(a)| // // when factoring a polynomial, we find a bound B for a factor of f of degree <= deg(f)/2 // allowing both positive and negative as coefficients of b, we now want a power p^e such that all coefficients // can be represented, i.e. [-B, B] \subset [-\ceil(p^e/2), \ceil(p^e)/2], so we peek e, such that p^e >= 2B static unsigned mignotte_bound(z_manager & upm, numeral_vector const & f, numeral const & p) { numeral_manager & nm = upm.m(); SASSERT(upm.degree(f) >= 2); unsigned n = upm.degree(f)/2; // >= 1 // get the approximation for the norm of a scoped_numeral f_norm(nm); for (unsigned i = 0; i < f.size(); ++ i) { if (!nm.is_zero(f[i])) { nm.addmul(f_norm, f[i], f[i], f_norm); } } nm.root(f_norm, 2); // by above we can pick (n-1 over (n-1/2))|a| + (n-1 over (n-1)/2)lc(a) // we approximate both binomial-coefficients with 2^(n-1), so to get 2B we use 2^n(f_norm + lc(f)) scoped_numeral bound(nm); nm.set(bound, 1); nm.mul2k(bound, n, bound); scoped_numeral tmp(nm); nm.set(tmp, f.back()); nm.abs(tmp); nm.add(f_norm, tmp, f_norm); nm.mul(bound, f_norm, bound); // we need e such that p^e >= B nm.set(tmp, p); unsigned e; for (e = 1; nm.le(tmp, bound); e *= 2) { nm.mul(tmp, tmp, tmp); } return e; } /** \brief Given f from Z[x] that is square free, it factors it. This method also assumes f is primitive. */ bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs, unsigned k, factor_params const & params) { TRACE("polynomial::factorization::bughunt", tout << "sage: f = "; upm.display(tout, f); tout << endl; tout << "sage: if (not f.is_squarefree()): print 'Error, f is not square-free'" << endl; tout << "sage: print 'Factoring :', f" << endl; tout << "sage: print 'Expected factors: ', f.factor()" << endl; ); numeral_manager & nm = upm.m(); // This method assumes f is primitive. Thus, the content of f must be one DEBUG_CODE({ scoped_numeral f_cont(nm); nm.gcd(f.size(), f.c_ptr(), f_cont); SASSERT(f.size() == 0 || nm.is_one(f_cont)); }); scoped_numeral_vector f_pp(nm); upm.set(f.size(), f.c_ptr(), f_pp); // make sure the leading coefficient is positive if (!f_pp.empty() && nm.is_neg(f_pp[f_pp.size() - 1])) { for (unsigned i = 0; i < f_pp.size(); i++) nm.neg(f_pp[i]); // flip sign constant if k is odd if (k % 2 == 1) { scoped_numeral c(nm); nm.set(c, fs.get_constant()); nm.neg(c); fs.set_constant(c); } } TRACE("polynomial::factorization::bughunt", tout << "sage: f_pp = "; upm.display(tout, f_pp); tout << endl; tout << "sage: if (not (f_pp * 1 == f): print 'Error, content computation wrong'" << endl; ); // the variables we'll be using and updating in Z_p scoped_numeral p(nm); nm.set(p, 2); zp_manager zp_upm(upm.lim(), nm.m()); zp_upm.set_zp(p); zp_factors zp_fs(zp_upm); scoped_numeral zp_fs_p(nm); nm.set(zp_fs_p, 2); // we keep all the possible sets of degrees of factors in this set factorization_degree_set degree_set(zp_upm); // we try get some number of factorizations in Z_p, for some primes // get the prime p such that // (1) (f_prim mod p) stays square-free // (2) l(f_prim) mod p doesn't vanish, i.e. we don't get a polynomial of smaller degree prime_iterator prime_it; scoped_numeral gcd_tmp(nm); unsigned trials = 0; while (trials < params.m_p_trials) { upm.checkpoint(); // construct prime to check uint64_t next_prime = prime_it.next(); if (next_prime > params.m_max_p) { fs.push_back(f_pp, k); return false; } nm.set(p, next_prime); zp_upm.set_zp(p); // we need gcd(lc(f_pp), p) = 1 nm.gcd(p, f_pp.back(), gcd_tmp); TRACE("polynomial::factorization::bughunt", tout << "sage: if (not (gcd(" << nm.to_string(p) << ", " << nm.to_string(f_pp.back()) << ")) == " << nm.to_string(gcd_tmp) << "): print 'Error, wrong gcd'" << endl; ); if (!nm.is_one(gcd_tmp)) { continue; } // if it's not square free, we also try something else scoped_numeral_vector f_pp_zp(nm); to_zp_manager(zp_upm, f_pp, f_pp_zp); TRACE("polynomial::factorization::bughunt", tout << "sage: Rp. = GF(" << nm.to_string(p) << ")['x_p']"; tout << endl; tout << "sage: f_pp_zp = "; zp_upm.display(tout, f_pp_zp, "x_p"); tout << endl; ); if (!zp_upm.is_square_free(f_pp_zp.size(), f_pp_zp.c_ptr())) continue; // we make it monic zp_upm.mk_monic(f_pp_zp.size(), f_pp_zp.c_ptr()); // found a candidate, factorize in Z_p and add back the constant zp_factors current_fs(zp_upm); bool factored = zp_factor_square_free(zp_upm, f_pp_zp, current_fs); if (!factored) { fs.push_back(f_pp, k); return true; } // get the factors degrees set factorization_degree_set current_degree_set(current_fs); if (degree_set.max_degree() == 0) { // first time, initialize degree_set.swap(current_degree_set); } else { degree_set.intersect(current_degree_set); } // if the degree set is trivial, we are done if (degree_set.is_trivial()) { fs.push_back(f_pp, k); return true; } // we found a candidate, lets keep it if it has less factors than the current best trials ++; if (zp_fs.distinct_factors() == 0 || zp_fs.total_factors() > current_fs.total_factors()) { zp_fs.swap(current_fs); nm.set(zp_fs_p, p); TRACE("polynomial::factorization::bughunt", tout << "best zp factorization (Z_" << nm.to_string(zp_fs_p) << "): "; tout << zp_fs << endl; tout << "best degree set: "; degree_set.display(tout); tout << endl; ); } } #ifndef _EXTERNAL_RELEASE IF_VERBOSE(FACTOR_VERBOSE_LVL, verbose_stream() << "(polynomial-factorization :at GF_" << nm.to_string(zp_upm.p()) << ")" << std::endl;); #endif // make sure to set the zp_manager back to modulo zp_fs_p zp_upm.set_zp(zp_fs_p); TRACE("polynomial::factorization::bughunt", tout << "best zp factorization (Z_" << nm.to_string(zp_fs_p) << "): " << zp_fs << endl; tout << "best degree set: "; degree_set.display(tout); tout << endl; ); // get a bound on B for the factors of f_pp with degree less or equal to deg(f)/2 // and then choose e to be smallest such that p^e > 2*lc(f)*B, we use the mignotte unsigned e = mignotte_bound(upm, f_pp, zp_fs_p); TRACE("polynomial::factorization::bughunt", tout << "out p = " << nm.to_string(zp_fs_p) << ", and we'll work p^e for e = " << e << endl; ); // we got a prime factoring, so we do the lifting now zp_manager zpe_upm(upm.lim(), nm.m()); zpe_upm.set_zp(zp_fs_p); zp_numeral_manager & zpe_nm = zpe_upm.m(); zp_factors zpe_fs(zpe_upm); // this might give something bigger than p^e, but the lifting procedure will update the zpe_nm // zp factors are monic, so will be the zpe factors, i.e. f_pp = zpe_fs * lc(f_pp) (mod p^e) hensel_lift(upm, f_pp, zp_fs, e, zpe_fs); #ifndef _EXTERNAL_RELEASE IF_VERBOSE(FACTOR_VERBOSE_LVL, verbose_stream() << "(polynomial-factorization :num-candidate-factors " << zpe_fs.distinct_factors() << ")" << std::endl;); #endif // the leading coefficient of f_pp mod p^e scoped_numeral f_pp_lc(nm); zpe_nm.set(f_pp_lc, f_pp.back()); // we always keep in f_pp the actual primitive part f_pp*lc(f_pp) upm.mul(f_pp, f_pp_lc); // now we go through the combinations of factors to check construct the factorization ufactorization_combination_iterator it(zpe_fs, degree_set); scoped_numeral_vector trial_factor(nm), trial_factor_quo(nm); scoped_numeral trial_factor_cont(nm); TRACE("polynomial::factorization::bughunt", tout << "STARTING TRIAL DIVISION" << endl; tout << "zpe_fs" << zpe_fs << endl; tout << "degree_set = "; degree_set.display(tout); tout << endl; ); bool result = true; bool remove = false; unsigned counter = 0; while (it.next(remove)) { upm.checkpoint(); counter++; if (counter > params.m_max_search_size) { // stop search result = false; break; } // // our bound ensures we can extract the right factors of degree at most 1/2 of the original // so, if out trial factor has degree bigger than 1/2, we need to take the rest of the factors // but, if we take the rest and it works, it doesn't mean that the rest is factorized, so we still take out // the original factor bool using_left = it.current_degree() <= zp_fs.get_degree()/2; if (using_left) { // do a quick check first scoped_numeral tmp(nm); it.get_left_tail_coeff(f_pp_lc, tmp); if (!nm.divides(tmp, f_pp[0])) { // don't remove this combination remove = false; continue; } it.left(trial_factor); } else { // do a quick check first scoped_numeral tmp(nm); it.get_right_tail_coeff(f_pp_lc, tmp); if (!nm.divides(tmp, f_pp[0])) { // don't remove this combination remove = false; continue; } it.right(trial_factor); } // add the lc(f_pp) to the trial divisor zpe_upm.mul(trial_factor, f_pp_lc); TRACE("polynomial::factorization::bughunt", tout << "f_pp*lc(f_pp) = "; upm.display(tout, f_pp); tout << endl; tout << "trial_factor = "; upm.display(tout, trial_factor); tout << endl; ); bool true_factor = upm.exact_div(f_pp, trial_factor, trial_factor_quo); TRACE("polynomial::factorization::bughunt", tout << "trial_factor = "; upm.display(tout, trial_factor); tout << endl; tout << "trial_factor_quo = "; upm.display(tout, trial_factor_quo); tout << endl; tout << "result = " << (true_factor ? "true" : "false") << endl; ); // if division is precise we have a factor if (true_factor) { if (!using_left) { // as noted above, we still use the original factor trial_factor.swap(trial_factor_quo); } // We need to get the content out of the factor upm.get_primitive_and_content(trial_factor, trial_factor, trial_factor_cont); // add the factor fs.push_back(trial_factor, k); // we continue with the quotient (with the content added back) // but we also have to keep lc(f_pp)*f_pp upm.get_primitive_and_content(trial_factor_quo, f_pp, trial_factor_cont); nm.set(f_pp_lc, f_pp.back()); upm.mul(f_pp, f_pp_lc); // but we also remove it from the iterator remove = true; } else { // don't remove this combination remove = false; } TRACE("polynomial::factorization::bughunt", tout << "factors = " << fs << endl; tout << "f_pp*lc(f_pp) = "; upm.display(tout, f_pp); tout << endl; tout << "lc(f_pp) = " << f_pp_lc << endl; ); } #ifndef _EXTERNAL_RELEASE IF_VERBOSE(FACTOR_VERBOSE_LVL, verbose_stream() << "(polynomial-factorization :search-size " << counter << ")" << std::endl;); #endif // add the what's left to the factors (if not a constant) if (f_pp.size() > 1) { upm.div(f_pp, f_pp_lc); fs.push_back(f_pp, k); } else { // if a constant it must be 1 (it was primitive) SASSERT(f_pp.size() == 1 && nm.is_one(f_pp.back())); } return result; } bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs, factor_params const & params) { return factor_square_free(upm, f, fs, 1, params); } }; // end upolynomial namespace