/*++ Copyright (c) 2024 Microsoft Corporation Module Name: sls_valuation.cpp Abstract: A Stochastic Local Search (SLS) engine Uses invertibility conditions, interval annotations don't care annotations Author: Nikolaj Bjorner (nbjorner) 2024-02-07 --*/ #include "ast/sls/sls_bv_valuation.h" namespace sls { void bvect::set_bw(unsigned bw) { this->bw = bw; nw = (bw + sizeof(digit_t) * 8 - 1) / (8 * sizeof(digit_t)); mask = (1 << (bw % (8 * sizeof(digit_t)))) - 1; if (mask == 0) mask = ~(digit_t)0; reserve(nw + 1); } bool operator==(bvect const& a, bvect const& b) { if (a.nw == 1) return a[0] == b[0]; SASSERT(a.nw > 0); return 0 == memcmp(a.data(), b.data(), a.nw * sizeof(digit_t)); } bool operator<(bvect const& a, bvect const& b) { SASSERT(a.nw > 0); return mpn_manager().compare(a.data(), a.nw, b.data(), a.nw) < 0; } bool operator>(bvect const& a, bvect const& b) { SASSERT(a.nw > 0); return mpn_manager().compare(a.data(), a.nw, b.data(), a.nw) > 0; } bool operator<=(bvect const& a, bvect const& b) { SASSERT(a.nw > 0); return mpn_manager().compare(a.data(), a.nw, b.data(), a.nw) <= 0; } bool operator>=(bvect const& a, bvect const& b) { SASSERT(a.nw > 0); return mpn_manager().compare(a.data(), a.nw, b.data(), a.nw) >= 0; } bool operator<=(digit_t a, bvect const& b) { for (unsigned i = 1; i < b.nw; ++i) if (0 != b[i]) return true; return mpn_manager().compare(&a, 1, b.data(), 1) <= 0; } bool operator<=(bvect const& a, digit_t b) { for (unsigned i = 1; i < a.nw; ++i) if (0 != a[i]) return false; return mpn_manager().compare(a.data(), 1, &b, 1) <= 0; } std::ostream& operator<<(std::ostream& out, bvect const& v) { out << std::hex; bool nz = false; for (unsigned i = v.nw; i-- > 0;) { auto w = v[i]; if (i + 1 == v.nw) w &= v.mask; if (nz) out << std::setw(8) << std::setfill('0') << w; else if (w != 0) out << w, nz = true; } if (!nz) out << "0"; out << std::dec; return out; } rational bvect::get_value(unsigned nw) const { rational p(1), r(0); for (unsigned i = 0; i < nw; ++i) { r += p * rational((*this)[i]); if (i + 1 < nw) p *= rational::power_of_two(8 * sizeof(digit_t)); } return r; } unsigned bvect::to_nat(unsigned max_n) const { SASSERT(max_n < UINT_MAX / 2); unsigned p = 1; unsigned value = 0; for (unsigned i = 0; i < bw; ++i) { if (p >= max_n) { for (unsigned j = i; j < bw; ++j) if (get(j)) return max_n; return value; } if (get(i)) value += p; p <<= 1; } return value; } bvect& bvect::set_shift_right(bvect const& a, bvect const& b) { SASSERT(a.bw == b.bw); unsigned shift = b.to_nat(b.bw); return set_shift_right(a, shift); } bvect& bvect::set_shift_right(bvect const& a, unsigned shift) { set_bw(a.bw); if (shift == 0) a.copy_to(a.nw, *this); else if (shift >= a.bw) set_zero(); else for (unsigned i = 0; i < bw; ++i) set(i, i + shift < bw ? a.get(i + shift) : false); return *this; } bvect& bvect::set_shift_left(bvect const& a, bvect const& b) { set_bw(a.bw); SASSERT(a.bw == b.bw); unsigned shift = b.to_nat(b.bw); if (shift == 0) a.copy_to(a.nw, *this); else if (shift >= a.bw) set_zero(); else for (unsigned i = bw; i-- > 0; ) set(i, i >= shift ? a.get(i - shift) : false); return *this; } bv_valuation::bv_valuation(unsigned bw) { set_bw(bw); m_lo.set_bw(bw); m_hi.set_bw(bw); m_bits.set_bw(bw); m_tmp.set_bw(bw); m_is_fixed.set_bw(bw); m_fixed_values.set_bw(bw); eval.set_bw(bw); // have lo, hi bits, fixed point to memory allocated within this of size num_bytes each allocated for (unsigned i = 0; i < nw; ++i) m_lo[i] = 0, m_hi[i] = 0, m_bits[i] = 0, m_is_fixed[i] = 0, eval[i] = 0, m_fixed_values[i] = 0; m_is_fixed[nw - 1] = ~mask; } void bv_valuation::set_bw(unsigned b) { bw = b; nw = (bw + sizeof(digit_t) * 8 - 1) / (8 * sizeof(digit_t)); mask = (1 << (bw % (8 * sizeof(digit_t)))) - 1; if (mask == 0) mask = ~(digit_t)0; } bool bv_valuation::commit_eval_check_tabu() { for (unsigned i = 0; i < nw; ++i) if (0 != (m_is_fixed[i] & (m_fixed_values[i] ^ eval[i]))) return false; if (!in_range(eval)) return false; commit_eval_ignore_tabu(); return true; } void bv_valuation::commit_eval_ignore_tabu() { for (unsigned i = 0; i < nw; ++i) m_bits[i] = eval[i]; SASSERT(well_formed()); } bool bv_valuation::in_range(bvect const& bits) const { mpn_manager m; auto c = m.compare(m_lo.data(), nw, m_hi.data(), nw); SASSERT(!has_overflow(bits)); // full range if (c == 0) return true; // lo < hi: then lo <= bits & bits < hi if (c < 0) return m.compare(m_lo.data(), nw, bits.data(), nw) <= 0 && m.compare(bits.data(), nw, m_hi.data(), nw) < 0; // hi < lo: bits < hi or lo <= bits return m.compare(m_lo.data(), nw, bits.data(), nw) <= 0 || m.compare(bits.data(), nw, m_hi.data(), nw) < 0; } // // largest dst <= src and dst is feasible // bool bv_valuation::get_at_most(bvect const& src, bvect& dst) const { SASSERT(!has_overflow(src)); src.copy_to(nw, dst); sup_feasible(dst); if (can_set(dst)) return true; if (dst < m_lo && m_lo < m_hi) // dst < lo < hi return false; if (is_zero(m_hi)) return false; m_hi.copy_to(nw, dst); // hi <= dst < lo or lo < hi <= dst sub1(dst); SASSERT(can_set(dst)); return true; } // // smallest dst >= src and dst is feasible with respect to this. bool bv_valuation::get_at_least(bvect const& src, bvect& dst) const { SASSERT(!has_overflow(src)); src.copy_to(nw, dst); dst.set_bw(bw); inf_feasible(dst); if (can_set(dst)) return true; if (dst > m_lo) return false; m_lo.copy_to(nw, dst); SASSERT(can_set(dst)); return true; } bool bv_valuation::set_random_at_most(bvect const& src, random_gen& r) { m_tmp.set_bw(bw); //verbose_stream() << "set_random_at_most " << src << "\n"; if (!get_at_most(src, m_tmp)) return false; if (is_zero(m_tmp) && (0 != r(2))) return try_set(m_tmp) && m_tmp <= src; // random value below tmp set_random_below(m_tmp, r); //verbose_stream() << "can set " << m_tmp << " " << can_set(m_tmp) << "\n"; return (can_set(m_tmp) || get_at_most(src, m_tmp)) && m_tmp <= src && try_set(m_tmp); } bool bv_valuation::set_random_at_least(bvect const& src, random_gen& r) { m_tmp.set_bw(bw); if (!get_at_least(src, m_tmp)) return false; if (is_ones(m_tmp) && (0 != r(10))) return try_set(m_tmp); // random value at least tmp set_random_above(m_tmp, r); return (can_set(m_tmp) || get_at_least(src, m_tmp)) && src <= m_tmp && try_set(m_tmp); } bool bv_valuation::set_random_in_range(bvect const& lo, bvect const& hi, random_gen& r) { bvect& tmp = m_tmp; if (0 == r(2)) { if (!get_at_least(lo, tmp)) return false; SASSERT(in_range(tmp)); if (hi < tmp) return false; set_random_above(tmp, r); round_down(tmp, [&](bvect const& t) { return hi >= t && in_range(t); }); if (in_range(tmp) || get_at_least(lo, tmp)) return lo <= tmp && tmp <= hi && try_set(tmp); } else { if (!get_at_most(hi, tmp)) return false; SASSERT(in_range(tmp)); if (lo > tmp) return false; set_random_below(tmp, r); round_up(tmp, [&](bvect const& t) { return lo <= t && in_range(t); }); if (in_range(tmp) || get_at_most(hi, tmp)) return lo <= tmp && tmp <= hi && try_set(tmp); } return false; } void bv_valuation::round_down(bvect& dst, std::function const& is_feasible) { for (unsigned i = bw; !is_feasible(dst) && i-- > 0; ) if (!m_is_fixed.get(i) && dst.get(i)) dst.set(i, false); repair_sign_bits(dst); } void bv_valuation::round_up(bvect& dst, std::function const& is_feasible) { for (unsigned i = 0; !is_feasible(dst) && i < bw; ++i) if (!m_is_fixed.get(i) && !dst.get(i)) dst.set(i, true); repair_sign_bits(dst); } void bv_valuation::set_random_above(bvect& dst, random_gen& r) { for (unsigned i = 0; i < nw; ++i) dst[i] = dst[i] | (random_bits(r) & ~m_is_fixed[i]); repair_sign_bits(dst); } void bv_valuation::set_random_below(bvect& dst, random_gen& r) { if (is_zero(dst)) return; unsigned n = 0, idx = UINT_MAX; for (unsigned i = 0; i < bw; ++i) if (dst.get(i) && !m_is_fixed.get(i) && (r() % ++n) == 0) idx = i; if (idx == UINT_MAX) return; dst.set(idx, false); for (unsigned i = 0; i < idx; ++i) if (!m_is_fixed.get(i)) dst.set(i, r() % 2 == 0); repair_sign_bits(dst); } bool bv_valuation::set_repair(bool try_down, bvect& dst) { for (unsigned i = 0; i < nw; ++i) dst[i] = (~m_is_fixed[i] & dst[i]) | (m_is_fixed[i] & m_bits[i]); clear_overflow_bits(dst); repair_sign_bits(dst); if (try_set(dst)) return true; bool repaired = false; dst.set_bw(bw); if (m_lo < m_hi) { for (unsigned i = bw; m_hi <= dst && !in_range(dst) && i-- > 0; ) if (!m_is_fixed.get(i) && dst.get(i)) dst.set(i, false); for (unsigned i = 0; i < bw && dst < m_lo && !in_range(dst); ++i) if (!m_is_fixed.get(i) && !dst.get(i)) dst.set(i, true); } else { for (unsigned i = 0; !in_range(dst) && i < bw; ++i) if (!m_is_fixed.get(i) && !dst.get(i)) dst.set(i, true); for (unsigned i = bw; !in_range(dst) && i-- > 0;) if (!m_is_fixed.get(i) && dst.get(i)) dst.set(i, false); } repair_sign_bits(dst); repaired = try_set(dst); dst.set_bw(0); return repaired; } void bv_valuation::min_feasible(bvect& out) const { if (m_lo < m_hi) m_lo.copy_to(nw, out); else { for (unsigned i = 0; i < nw; ++i) out[i] = m_is_fixed[i] & m_bits[i]; } repair_sign_bits(out); SASSERT(!has_overflow(out)); } void bv_valuation::max_feasible(bvect& out) const { if (m_lo < m_hi) { m_hi.copy_to(nw, out); sub1(out); } else { for (unsigned i = 0; i < nw; ++i) out[i] = ~m_is_fixed[i] | m_bits[i]; } repair_sign_bits(out); SASSERT(!has_overflow(out)); } unsigned bv_valuation::msb(bvect const& src) const { SASSERT(!has_overflow(src)); for (unsigned i = nw; i-- > 0; ) if (src[i] != 0) return i * 8 * sizeof(digit_t) + log2(src[i]); return bw; } unsigned bv_valuation::clz(bvect const& src) const { SASSERT(!has_overflow(src)); unsigned i = bw; for (; i-- > 0; ) if (!src.get(i)) return bw - 1 - i; return bw; } void bv_valuation::set_value(bvect& bits, rational const& n) { for (unsigned i = 0; i < bw; ++i) bits.set(i, n.get_bit(i)); clear_overflow_bits(bits); } void bv_valuation::get(bvect& dst) const { m_bits.copy_to(nw, dst); } digit_t bv_valuation::random_bits(random_gen& rand) { digit_t r = 0; for (digit_t i = 0; i < sizeof(digit_t); ++i) r ^= rand() << (8 * i); return r; } void bv_valuation::get_variant(bvect& dst, random_gen& r) const { for (unsigned i = 0; i < nw; ++i) dst[i] = (random_bits(r) & ~m_is_fixed[i]) | (m_is_fixed[i] & m_bits[i]); repair_sign_bits(dst); clear_overflow_bits(dst); } bool bv_valuation::set_random(random_gen& r) { get_variant(m_tmp, r); repair_sign_bits(m_tmp); if (try_set(m_tmp)) return true; for (unsigned i = 0; i < nw; ++i) m_tmp[i] = random_bits(r); clear_overflow_bits(m_tmp); // find a random offset within [lo, hi[ SASSERT(m_lo != m_hi); set_sub(eval, m_hi, m_lo); for (unsigned i = bw; i-- > 0 && m_tmp >= eval; ) m_tmp.set(i, false); // set eval back to m_bits. It was garbage. set(eval, m_bits); // tmp := lo + tmp is within [lo, hi[ set_add(m_tmp, m_tmp, m_lo); // respect fixed bits for (unsigned i = 0; i < bw; ++i) if (m_is_fixed.get(i)) m_tmp.set(i, m_bits.get(i)); // decrease tmp until it is in range again for (unsigned i = bw; i-- > 0 && !in_range(m_tmp); ) if (!m_is_fixed.get(i)) m_tmp.set(i, false); repair_sign_bits(m_tmp); return try_set(m_tmp); } void bv_valuation::repair_sign_bits(bvect& dst) const { if (m_signed_prefix == 0) return; bool sign = m_signed_prefix == bw ? dst.get(bw - 1) : dst.get(bw - m_signed_prefix - 1); for (unsigned i = bw; i-- > bw - m_signed_prefix; ) { if (dst.get(i) != sign) { if (m_is_fixed.get(i)) { unsigned j = bw - m_signed_prefix; if (j > 0 && !m_is_fixed.get(j - 1)) dst.set(j - 1, !sign); for (unsigned i = bw; i-- > bw - m_signed_prefix; ) if (!m_is_fixed.get(i)) dst.set(i, !sign); return; } else dst.set(i, sign); } } } // // new_bits != bits => ~fixed // 0 = (new_bits ^ bits) & fixedf // also check that new_bits are in range // bool bv_valuation::can_set(bvect const& new_bits) const { SASSERT(!has_overflow(new_bits)); for (unsigned i = 0; i < nw; ++i) if (0 != ((new_bits[i] ^ m_fixed_values[i]) & m_is_fixed[i])) return false; return in_range(new_bits); } unsigned bv_valuation::to_nat(unsigned max_n) const { bvect const& d = m_bits; SASSERT(!has_overflow(d)); return d.to_nat(max_n); } void bv_valuation::shift_right(bvect& out, unsigned shift) const { SASSERT(shift < bw); for (unsigned i = 0; i < bw; ++i) out.set(i, i + shift < bw ? out.get(i + shift) : false); SASSERT(well_formed()); } void bv_valuation::add_range(rational l, rational h) { l = mod(l, rational::power_of_two(bw)); h = mod(h, rational::power_of_two(bw)); if (h == l) return; //verbose_stream() << *this << " lo " << l << " hi " << h << " --> "; if (m_lo == m_hi) { set_value(m_lo, l); set_value(m_hi, h); } else { auto old_lo = lo(); auto old_hi = hi(); if (old_lo < old_hi) { if (old_lo < l && l < old_hi && old_hi <= h) set_value(m_lo, l), old_lo = l; if (l <= old_lo && old_lo < h && h < old_hi) set_value(m_hi, h); } else { SASSERT(old_hi < old_lo); if (h <= old_hi && old_lo <= l) { set_value(m_lo, l); set_value(m_hi, h); } else if (old_lo <= l && l <= h) { set_value(m_lo, l); set_value(m_hi, h); } else if (old_lo + 1 == l) set_value(m_lo, l); else if (old_hi == h + 1) set_value(m_hi, h); else if (old_hi == h && old_lo < l) set_value(m_lo, l); else if (old_lo == l && h < old_hi) set_value(m_hi, h); } } SASSERT(!has_overflow(m_lo)); SASSERT(!has_overflow(m_hi)); //verbose_stream() << *this << " --> "; tighten_range(); //verbose_stream() << *this << "\n"; SASSERT(well_formed()); } // // update bits based on ranges // unsigned bv_valuation::diff_index(bvect const& a) const { unsigned index = 0; for (unsigned i = nw; i-- > 0; ) { auto diff = m_is_fixed[i] & (m_fixed_values[i] ^ a[i]); if (diff != 0 && index == 0) index = 1 + i * 8 * sizeof(digit_t) + log2(diff); } return index; } // The least a' >= a, such that the fixed bits in bits agree with a'. // 0 if there is no such a'. void bv_valuation::inf_feasible(bvect& a) const { unsigned lo_index = diff_index(a); if (lo_index == 0) return; --lo_index; // decrement a[lo_index:0] maximally SASSERT(a.get(lo_index) != m_fixed_values.get(lo_index)); SASSERT(m_is_fixed.get(lo_index)); for (unsigned i = 0; i <= lo_index; ++i) { if (!m_is_fixed.get(i)) a.set(i, false); else if (m_is_fixed.get(i)) a.set(i, m_fixed_values.get(i)); } // the previous value of a[lo_index] was 0. // a[lo_index:0] was incremented, so no need to adjust bits a[:lo_index+1] if (a.get(lo_index)) return; // find the minimal increment within a[:lo_index+1] for (unsigned i = lo_index + 1; i < bw; ++i) { if (!m_is_fixed.get(i) && !a.get(i)) { a.set(i, true); return; } } // there is no feasiable value a' >= a, so find the least // feasiable value a' >= 0. for (unsigned i = 0; i < bw; ++i) if (!m_is_fixed.get(i)) a.set(i, false); } // The greatest a' <= a, such that the fixed bits in bits agree with a'. // the greatest a' <= -1 if there is no such a'. void bv_valuation::sup_feasible(bvect& a) const { unsigned hi_index = diff_index(a); if (hi_index == 0) return; --hi_index; SASSERT(a.get(hi_index) != m_fixed_values.get(hi_index)); SASSERT(m_is_fixed.get(hi_index)); // increment a[hi_index:0] maximally for (unsigned i = 0; i <= hi_index; ++i) { if (!m_is_fixed.get(i)) a.set(i, true); else if (m_is_fixed.get(i)) a.set(i, m_fixed_values.get(i)); } // If a[hi_index:0] was decremented, then no need to adjust bits a[:hi_index+1] if (!a.get(hi_index)) return; // find the minimal decrement within a[:hi_index+1] for (unsigned i = hi_index + 1; i < bw; ++i) { if (!m_is_fixed.get(i) && a.get(i)) { a.set(i, false); return; } } // a[hi_index:0] was incremented, but a[:hi_index+1] cannot be decremented. // maximize a[:hi_index+1] to model wrap around behavior. for (unsigned i = hi_index + 1; i < bw; ++i) if (!m_is_fixed.get(i)) a.set(i, true); } void bv_valuation::tighten_range() { if (!has_range()) return; inf_feasible(m_lo); bvect& hi1 = m_tmp; hi1.set_bw(bw); m_hi.copy_to(nw, hi1); sub1(hi1); sup_feasible(hi1); add1(hi1); hi1.copy_to(nw, m_hi); if (!has_range()) return; if (!in_range(m_bits) || !in_range(m_fixed_values)) { if (!can_set(m_lo)) return; m_lo.copy_to(nw, m_fixed_values); m_lo.copy_to(nw, m_bits); } if (mod(lo() + 1, rational::power_of_two(bw)) == hi()) for (unsigned i = 0; i < nw; ++i) m_is_fixed[i] = ~0; if (lo() < hi() && hi() < rational::power_of_two(bw - 1)) for (unsigned i = 0; i < bw; ++i) if (hi() < rational::power_of_two(i)) m_is_fixed.set(i, true); SASSERT(well_formed()); } void bv_valuation::set_sub(bvect& out, bvect const& a, bvect const& b) const { digit_t c; mpn_manager().sub(a.data(), nw, b.data(), nw, out.data(), &c); clear_overflow_bits(out); } bool bv_valuation::set_add(bvect& out, bvect const& a, bvect const& b) const { digit_t c; mpn_manager().add(a.data(), nw, b.data(), nw, out.data(), nw + 1, &c); bool ovfl = out[nw] != 0 || has_overflow(out); clear_overflow_bits(out); return ovfl; } bool bv_valuation::set_mul(bvect& out, bvect const& a, bvect const& b, bool check_overflow) const { out.reserve(2 * nw); SASSERT(out.size() >= 2 * nw); mpn_manager().mul(a.data(), nw, b.data(), nw, out.data()); bool ovfl = false; if (check_overflow) { ovfl = has_overflow(out); for (unsigned i = nw; i < 2 * nw; ++i) ovfl |= out[i] != 0; } clear_overflow_bits(out); return ovfl; } bool bv_valuation::is_power_of2(bvect const& src) const { unsigned c = 0; for (unsigned i = 0; i < nw; ++i) c += get_num_1bits(src[i]); return c == 1; } }