/*++ Copyright (c) 2011 Microsoft Corporation Module Name: bv_rewriter.cpp Abstract: Basic rewriting rules for bit-vectors Author: Leonardo (leonardo) 2011-04-14 Notes: --*/ #include"bv_rewriter.h" #include"poly_rewriter_def.h" #include"ast_smt2_pp.h" mk_extract_proc::mk_extract_proc(bv_util & u): m_util(u), m_high(0), m_low(UINT_MAX), m_domain(0), m_f_cached(0) { } mk_extract_proc::~mk_extract_proc() { if (m_f_cached) { // m_f_cached has a reference to m_domain, so, I don't need to inc_ref m_domain ast_manager & m = m_util.get_manager(); m.dec_ref(m_f_cached); } } app * mk_extract_proc::operator()(unsigned high, unsigned low, expr * arg) { ast_manager & m = m_util.get_manager(); sort * s = m.get_sort(arg); if (m_low == low && m_high == high && m_domain == s) return m.mk_app(m_f_cached, arg); // m_f_cached has a reference to m_domain, so, I don't need to inc_ref m_domain if (m_f_cached) m.dec_ref(m_f_cached); app * r = to_app(m_util.mk_extract(high, low, arg)); m_high = high; m_low = low; m_domain = s; m_f_cached = r->get_decl(); m.inc_ref(m_f_cached); return r; } void bv_rewriter::updt_local_params(params_ref const & p) { m_hi_div0 = p.get_bool(":hi-div0", true); m_elim_sign_ext = p.get_bool(":elim-sign-ext", true); m_mul2concat = p.get_bool(":mul2concat", false); m_bit2bool = p.get_bool(":bit2bool", true); m_blast_eq_value = p.get_bool(":blast-eq-value", false); m_mkbv2num = p.get_bool(":mkbv2num", false); m_split_concat_eq = p.get_bool(":split-concat-eq", false); m_udiv2mul = p.get_bool(":udiv2mul", false); } void bv_rewriter::updt_params(params_ref const & p) { poly_rewriter::updt_params(p); updt_local_params(p); } void bv_rewriter::get_param_descrs(param_descrs & r) { poly_rewriter::get_param_descrs(r); r.insert(":udiv2mul", CPK_BOOL, "(default: false) convert constant udiv to mul."); r.insert(":split-concat-eq", CPK_BOOL, "(default: false) split equalities of the form (= (concat t1 t2) t3)."); r.insert(":bit2bool", CPK_BOOL, "(default: true) try to convert bit-vector terms of size 1 into Boolean terms."); r.insert(":blast-eq-value", CPK_BOOL, "(default: false) blast (some) Bit-vector equalities into bits."); r.insert(":elim-sign-ext", CPK_BOOL, "(default: true) expand sign-ext operator using concat and extract."); r.insert(":hi-div0", CPK_BOOL, "(default: true) use the 'hardware interpretation' for division by zero (for bit-vector terms)."); r.insert(":mul2concat", CPK_BOOL, "(default: false) replace multiplication by a power of two into a concatenation."); #ifndef _EXTERNAL_RELEASE r.insert(":mkbv2num", CPK_BOOL, "(default: false) convert (mkbv [true/false]*) into a numeral"); #endif } br_status bv_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { SASSERT(f->get_family_id() == get_fid()); switch(f->get_decl_kind()) { case OP_BIT0: SASSERT(num_args == 0); result = m_util.mk_numeral(0, 1); return BR_DONE; case OP_BIT1: SASSERT(num_args == 0); result = m_util.mk_numeral(1, 1); return BR_DONE; case OP_ULEQ: SASSERT(num_args == 2); return mk_ule(args[0], args[1], result); case OP_UGEQ: SASSERT(num_args == 2); return mk_uge(args[0], args[1], result); case OP_ULT: SASSERT(num_args == 2); return mk_ult(args[0], args[1], result); case OP_UGT: SASSERT(num_args == 2); return mk_ult(args[1], args[0], result); case OP_SLEQ: SASSERT(num_args == 2); return mk_sle(args[0], args[1], result); case OP_SGEQ: SASSERT(num_args == 2); return mk_sge(args[0], args[1], result); case OP_SLT: SASSERT(num_args == 2); return mk_slt(args[0], args[1], result); case OP_SGT: SASSERT(num_args == 2); return mk_slt(args[1], args[0], result); case OP_BADD: SASSERT(num_args > 0); return mk_bv_add(num_args, args, result); case OP_BMUL: SASSERT(num_args > 0); return mk_bv_mul(num_args, args, result); case OP_BSUB: SASSERT(num_args > 0); return mk_sub(num_args, args, result); case OP_BNEG: SASSERT(num_args == 1); return mk_uminus(args[0], result); case OP_BSHL: SASSERT(num_args == 2); return mk_bv_shl(args[0], args[1], result); case OP_BLSHR: SASSERT(num_args == 2); return mk_bv_lshr(args[0], args[1], result); case OP_BASHR: SASSERT(num_args == 2); return mk_bv_ashr(args[0], args[1], result); case OP_BSDIV: SASSERT(num_args == 2); return mk_bv_sdiv(args[0], args[1], result); case OP_BUDIV: SASSERT(num_args == 2); return mk_bv_udiv(args[0], args[1], result); case OP_BSREM: SASSERT(num_args == 2); return mk_bv_srem(args[0], args[1], result); case OP_BUREM: SASSERT(num_args == 2); return mk_bv_urem(args[0], args[1], result); case OP_BSMOD: SASSERT(num_args == 2); return mk_bv_smod(args[0], args[1], result); case OP_BSDIV_I: SASSERT(num_args == 2); return mk_bv_sdiv_i(args[0], args[1], result); case OP_BUDIV_I: SASSERT(num_args == 2); return mk_bv_udiv_i(args[0], args[1], result); case OP_BSREM_I: SASSERT(num_args == 2); return mk_bv_srem_i(args[0], args[1], result); case OP_BUREM_I: SASSERT(num_args == 2); return mk_bv_urem_i(args[0], args[1], result); case OP_BSMOD_I: SASSERT(num_args == 2); return mk_bv_smod_i(args[0], args[1], result); case OP_CONCAT: return mk_concat(num_args, args, result); case OP_EXTRACT: SASSERT(num_args == 1); return mk_extract(m_util.get_extract_high(f), m_util.get_extract_low(f), args[0], result); case OP_REPEAT: SASSERT(num_args == 1); return mk_repeat(f->get_parameter(0).get_int(), args[0], result); case OP_ZERO_EXT: SASSERT(num_args == 1); return mk_zero_extend(f->get_parameter(0).get_int(), args[0], result); case OP_SIGN_EXT: SASSERT(num_args == 1); return mk_sign_extend(f->get_parameter(0).get_int(), args[0], result); case OP_BOR: return mk_bv_or(num_args, args, result); case OP_BXOR: return mk_bv_xor(num_args, args, result); case OP_BNOT: SASSERT(num_args == 1); return mk_bv_not(args[0], result); case OP_BAND: return mk_bv_and(num_args, args, result); case OP_BNAND: return mk_bv_nand(num_args, args, result); case OP_BNOR: return mk_bv_nor(num_args, args, result); case OP_BXNOR: return mk_bv_xnor(num_args, args, result); case OP_ROTATE_LEFT: SASSERT(num_args == 1); return mk_bv_rotate_left(f->get_parameter(0).get_int(), args[0], result); case OP_ROTATE_RIGHT: SASSERT(num_args == 1); return mk_bv_rotate_right(f->get_parameter(0).get_int(), args[0], result); case OP_EXT_ROTATE_LEFT: SASSERT(num_args == 2); return mk_bv_ext_rotate_left(args[0], args[1], result); case OP_EXT_ROTATE_RIGHT: SASSERT(num_args == 2); return mk_bv_ext_rotate_right(args[0], args[1], result); case OP_BV2INT: SASSERT(num_args == 1); return mk_bv2int(args[0], result); case OP_INT2BV: SASSERT(num_args == 1); return mk_int2bv(m_util.get_bv_size(f->get_range()), args[0], result); case OP_BREDOR: SASSERT(num_args == 1); return mk_bv_redor(args[0], result); case OP_BREDAND: SASSERT(num_args == 1); return mk_bv_redand(args[0], result); case OP_BCOMP: SASSERT(num_args == 2); return mk_bv_comp(args[0], args[1], result); case OP_MKBV: return mk_mkbv(num_args, args, result); default: return BR_FAILED; } } br_status bv_rewriter::mk_ule(expr * a, expr * b, expr_ref & result) { return mk_leq_core(false, a, b, result); } br_status bv_rewriter::mk_uge(expr * a, expr * b, expr_ref & result) { br_status st = mk_ule(b, a, result); if (st != BR_FAILED) return st; result = m_util.mk_ule(b, a); return BR_DONE; } br_status bv_rewriter::mk_ult(expr * a, expr * b, expr_ref & result) { result = m().mk_not(m_util.mk_ule(b, a)); return BR_REWRITE2; } br_status bv_rewriter::mk_sle(expr * a, expr * b, expr_ref & result) { return mk_leq_core(true, a, b, result); } br_status bv_rewriter::mk_sge(expr * a, expr * b, expr_ref & result) { br_status st = mk_sle(b, a, result); if (st != BR_FAILED) return st; result = m_util.mk_sle(b, a); return BR_DONE; } br_status bv_rewriter::mk_slt(expr * a, expr * b, expr_ref & result) { result = m().mk_not(m_util.mk_sle(b, a)); return BR_REWRITE2; } br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref & result) { numeral r1, r2, r3; unsigned sz; bool is_num1 = is_numeral(a, r1, sz); bool is_num2 = is_numeral(b, r2, sz); if (a == b) { result = m().mk_true(); return BR_DONE; } if (is_num1) r1 = m_util.norm(r1, sz, is_signed); if (is_num2) r2 = m_util.norm(r2, sz, is_signed); if (is_num1 && is_num2) { result = r1 <= r2 ? m().mk_true() : m().mk_false(); return BR_DONE; } numeral lower, upper; if (is_num1 || is_num2) { if (is_signed) { lower = - m_util.power_of_two(sz - 1); upper = m_util.power_of_two(sz - 1) - numeral(1); } else { lower = numeral(0); upper = m_util.power_of_two(sz) - numeral(1); } } if (is_num2) { if (r2 == lower) { result = m().mk_eq(a, b); return BR_REWRITE1; } if (r2 == upper) { result = m().mk_true(); return BR_DONE; } } if (is_num1) { // 0 <= b is true if (r1 == lower) { result = m().mk_true(); return BR_DONE; } // 2^n-1 <= b is a = b if (r1 == upper) { result = m().mk_eq(a, b); return BR_REWRITE1; } } #if 0 if (!is_signed && m_util.is_concat(b) && to_app(b)->get_num_args() == 2 && m_util.is_zero(to_app(b)->get_arg(0))) { // // a <=_u (concat 0 c) ---> a[h:l] = 0 && a[l-1:0] <=_u c // expr * b_1 = to_app(b)->get_arg(0); expr * b_2 = to_app(b)->get_arg(1); unsigned sz1 = get_bv_size(b_1); unsigned sz2 = get_bv_size(b_2); result = m().mk_and(m().mk_eq(m_mk_extract(sz2+sz1-1, sz2, a), b_1), m_util.mk_ule(m_mk_extract(sz2-1, 0, a), b_2)); return BR_REWRITE3; } #else if (!is_signed) { // Extended version of the rule above using is_zero_bit. // It also catches examples atoms such as: // // a <=_u #x000f // unsigned bv_sz = m_util.get_bv_size(b); unsigned i = bv_sz; unsigned first_non_zero = UINT_MAX; while (i > 0) { --i; if (!is_zero_bit(b, i)) { first_non_zero = i; break; } } if (first_non_zero == UINT_MAX) { // all bits are zero result = m().mk_eq(a, m_util.mk_numeral(numeral(0), bv_sz)); return BR_REWRITE1; } else if (first_non_zero < bv_sz - 1) { result = m().mk_and(m().mk_eq(m_mk_extract(bv_sz - 1, first_non_zero + 1, a), m_util.mk_numeral(numeral(0), bv_sz - first_non_zero - 1)), m_util.mk_ule(m_mk_extract(first_non_zero, 0, a), m_mk_extract(first_non_zero, 0, b))); return BR_REWRITE3; } } #endif // Investigate if we need: // // k <=_s (concat 0 a) <=> (k[u:l] = 0 && k[l-1:0] <=_u a) || k[u:u] = bv1 // // (concat 0 a) <=_s k <=> k[u:u] = bv0 && (k[u:l] != 0 || a <=_u k[l-1:0]) // // (concat 0 a) <=_u k <=> k[u:l] != 0 || a <=_u k[l-1:0] // return BR_FAILED; } br_status bv_rewriter::mk_extract(unsigned high, unsigned low, expr * arg, expr_ref & result) { unsigned sz = get_bv_size(arg); SASSERT(sz > 0); if (low == 0 && high == sz - 1) { result = arg; return BR_DONE; } numeral v; if (is_numeral(arg, v, sz)) { sz = high - low + 1; if (v.is_neg()) mod(v, m_util.power_of_two(sz), v); if (v.is_uint64()) { uint64 u = v.get_uint64(); uint64 e = shift_right(u, low) & (shift_left(1ull, sz) - 1ull); result = mk_numeral(numeral(e, numeral::ui64()), sz); return BR_DONE; } div(v, m_util.power_of_two(low), v); result = mk_numeral(v, sz); return BR_DONE; } // (extract[high:low] (extract[high2:low2] x)) == (extract[high+low2 : low+low2] x) if (m_util.is_extract(arg)) { unsigned low2 = m_util.get_extract_low(arg); result = m_mk_extract(high + low2, low + low2, to_app(arg)->get_arg(0)); return BR_DONE; } // (extract (concat ....)) --> (concat (extract ...) ... (extract ...) ) if (m_util.is_concat(arg)) { unsigned num = to_app(arg)->get_num_args(); unsigned idx = sz; for (unsigned i = 0; i < num; i++) { expr * curr = to_app(arg)->get_arg(i); unsigned curr_sz = get_bv_size(curr); idx -= curr_sz; if (idx > high) continue; // found first argument if (idx <= low) { // result is a fragment of this argument if (low == idx && high - idx == curr_sz - 1) { result = curr; return BR_DONE; } else { result = m_mk_extract(high - idx, low - idx, curr); return BR_REWRITE1; } } else { // look for remaining arguments ptr_buffer new_args; bool used_extract = false; if (high - idx == curr_sz - 1) { new_args.push_back(curr); } else { used_extract = true; new_args.push_back(m_mk_extract(high - idx, 0, curr)); } for (unsigned j = i + 1; j < num; j++) { curr = to_app(arg)->get_arg(j); unsigned curr_sz = get_bv_size(curr); idx -= curr_sz; if (idx > low) { new_args.push_back(curr); continue; } if (idx == low) { new_args.push_back(curr); result = m_util.mk_concat(new_args.size(), new_args.c_ptr()); return used_extract ? BR_REWRITE2 : BR_DONE; } new_args.push_back(m_mk_extract(curr_sz - 1, low - idx, curr)); result = m_util.mk_concat(new_args.size(), new_args.c_ptr()); return BR_REWRITE2; } UNREACHABLE(); } } UNREACHABLE(); } if (m_util.is_bv_not(arg) || m_util.is_bv_or(arg) || m_util.is_bv_xor(arg) || (low == 0 && (m_util.is_bv_add(arg) || m_util.is_bv_mul(arg)))) { ptr_buffer new_args; unsigned num = to_app(arg)->get_num_args(); for (unsigned i = 0; i < num; i++) { expr * curr = to_app(arg)->get_arg(i); new_args.push_back(m_mk_extract(high, low, curr)); } result = m().mk_app(get_fid(), to_app(arg)->get_decl()->get_decl_kind(), new_args.size(), new_args.c_ptr()); return BR_REWRITE2; } if (m().is_ite(arg)) { result = m().mk_ite(to_app(arg)->get_arg(0), m_mk_extract(high, low, to_app(arg)->get_arg(1)), m_mk_extract(high, low, to_app(arg)->get_arg(2))); return BR_REWRITE2; } return BR_FAILED; } br_status bv_rewriter::mk_bv_shl(expr * arg1, expr * arg2, expr_ref & result) { numeral r1, r2; unsigned bv_size = get_bv_size(arg1); unsigned sz; if (is_numeral(arg2, r2, sz)) { if (r2.is_zero()) { // x << 0 == x result = arg1; return BR_DONE; } if (r2 >= numeral(bv_size)) { result = mk_numeral(0, bv_size); return BR_DONE; } if (is_numeral(arg1, r1, sz)) { if (bv_size <= 64) { SASSERT(r1.is_uint64() && r2.is_uint64()); SASSERT(r2.get_uint64() < bv_size); uint64 r = shift_left(r1.get_uint64(), r2.get_uint64()); numeral rn(r, numeral::ui64()); rn = m_util.norm(rn, bv_size); result = mk_numeral(rn, bv_size); return BR_DONE; } SASSERT(r2 < numeral(bv_size)); SASSERT(r2.is_unsigned()); r1 = m_util.norm(r1 * m_util.power_of_two(r2.get_unsigned()), bv_size); result = mk_numeral(r1, bv_size); return BR_DONE; } SASSERT(r2.is_pos()); SASSERT(r2 < numeral(bv_size)); // (bvshl x k) -> (concat (extract [n-1-k:0] x) bv0:k) unsigned k = r2.get_unsigned(); expr * new_args[2] = { m_mk_extract(bv_size - k - 1, 0, arg1), mk_numeral(0, k) }; result = m_util.mk_concat(2, new_args); return BR_REWRITE2; } return BR_FAILED; } br_status bv_rewriter::mk_bv_lshr(expr * arg1, expr * arg2, expr_ref & result) { numeral r1, r2; unsigned bv_size = get_bv_size(arg1); unsigned sz; if (is_numeral(arg2, r2, sz)) { if (r2.is_zero()) { // x >> 0 == x result = arg1; return BR_DONE; } if (r2 >= numeral(bv_size)) { result = mk_numeral(0, bv_size); return BR_DONE; } if (is_numeral(arg1, r1, sz)) { if (bv_size <= 64) { SASSERT(r1.is_uint64()); SASSERT(r2.is_uint64()); uint64 r = shift_right(r1.get_uint64(), r2.get_uint64()); numeral rn(r, numeral::ui64()); rn = m_util.norm(rn, bv_size); result = mk_numeral(rn, bv_size); return BR_DONE; } SASSERT(r2.is_unsigned()); unsigned sh = r2.get_unsigned(); div(r1, m_util.power_of_two(sh), r1); result = mk_numeral(r1, bv_size); return BR_DONE; } SASSERT(r2.is_pos()); SASSERT(r2 < numeral(bv_size)); // (bvlshr x k) -> (concat bv0:k (extract [n-1:k] x)) SASSERT(r2.is_unsigned()); unsigned k = r2.get_unsigned(); expr * new_args[2] = { mk_numeral(0, k), m_mk_extract(bv_size - 1, k, arg1) }; result = m_util.mk_concat(2, new_args); return BR_REWRITE2; } return BR_FAILED; } br_status bv_rewriter::mk_bv_ashr(expr * arg1, expr * arg2, expr_ref & result) { numeral r1, r2; unsigned bv_size = get_bv_size(arg1); SASSERT(bv_size > 0); bool is_num2 = is_numeral(arg2, r2, bv_size); if (is_num2 && r2.is_zero()) { result = arg1; return BR_DONE; } bool is_num1 = is_numeral(arg1, r1, bv_size); if (bv_size <= 64 && is_num1 && is_num2) { uint64 n1 = r1.get_uint64(); uint64 n2_orig = r2.get_uint64(); uint64 n2 = n2_orig % bv_size; SASSERT(n2 < bv_size); uint64 r = shift_right(n1, n2); bool sign = (n1 & shift_left(1ull, bv_size - 1ull)) != 0; if (n2_orig > n2) { if (sign) { r = shift_left(1ull, bv_size) - 1ull; } else { r = 0; } } else if (sign) { uint64 allone = shift_left(1ull, bv_size) - 1ull; uint64 mask = ~(shift_left(1ull, bv_size - n2) - 1ull); mask &= allone; r |= mask; } result = mk_numeral(numeral(r, numeral::ui64()), bv_size); return BR_DONE; } if (is_num1 && is_num2 && numeral(bv_size) <= r2) { if (m_util.has_sign_bit(r1, bv_size)) result = mk_numeral(m_util.power_of_two(bv_size) - numeral(1), bv_size); else result = mk_numeral(0, bv_size); return BR_DONE; } if (is_num1 && is_num2) { SASSERT(r2 < numeral(bv_size)); bool sign = m_util.has_sign_bit(r1, bv_size); div(r1, m_util.power_of_two(r2.get_unsigned()), r1); if (sign) { // pad ones. numeral p(1); for (unsigned i = 0; i < bv_size; ++i) { if (r1 < p) { r1 += p; } p *= numeral(2); } } result = mk_numeral(r1, bv_size); return BR_DONE; } // (bvashr (bvashr x r1) r2) --> (bvashr x r1+r2) if (is_num2 && m_util.is_bv_ashr(arg1) && is_numeral(to_app(arg1)->get_arg(1), r1, bv_size)) { r1 += r2; if (r1 > numeral(bv_size)) r1 = numeral(bv_size); result = m().mk_app(get_fid(), OP_BASHR, to_app(arg1)->get_arg(0), mk_numeral(r1, bv_size)); return BR_REWRITE1; // not really needed at this time. } #if 0 // (bvashr x k) --> (concat extract[sz-1:sz-1](x) ... extract[sz-1:sz-1](x) extract[sz-1:k](x)) if (is_num2) { ptr_buffer new_args; if (r2 > numeral(bv_size)) r2 = numeral(bv_size); SASSERT(r2 <= numeral(bv_size)); unsigned k = r2.get_unsigned(); expr * sign = m_mk_extract(bv_size-1, bv_size-1, arg1); for (unsigned i = 0; i < k; i++) new_args.push_back(sign); if (k != bv_size) new_args.push_back(m_mk_extract(bv_size-1, k, arg1)); result = m_util.mk_concat(new_args.size(), new_args.c_ptr()); return BR_REWRITE2; } #endif return BR_FAILED; } br_status bv_rewriter::mk_bv_sdiv_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) { numeral r1, r2; unsigned bv_size; if (is_numeral(arg2, r2, bv_size)) { r2 = m_util.norm(r2, bv_size, true); if (r2.is_zero()) { if (!hi_div0) { result = m().mk_app(get_fid(), OP_BSDIV0, arg1); return BR_DONE; } else { // The "hardware interpretation" for (bvsdiv x 0) is (ite (bvslt x #x0000) #x0001 #xffff) result = m().mk_ite(m().mk_app(get_fid(), OP_SLT, arg1, mk_numeral(0, bv_size)), mk_numeral(1, bv_size), mk_numeral(m_util.power_of_two(bv_size) - numeral(1), bv_size)); return BR_REWRITE2; } } if (r2.is_one()) { result = arg1; return BR_DONE; } if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) { r1 = m_util.norm(r1, bv_size, true); result = mk_numeral(machine_div(r1, r2), bv_size); return BR_DONE; } result = m().mk_app(get_fid(), OP_BSDIV_I, arg1, arg2); return BR_DONE; } if (hi_div0) { result = m().mk_app(get_fid(), OP_BSDIV_I, arg1, arg2); return BR_DONE; } bv_size = get_bv_size(arg2); result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)), m().mk_app(get_fid(), OP_BSDIV0, arg1), m().mk_app(get_fid(), OP_BSDIV_I, arg1, arg2)); return BR_REWRITE2; } br_status bv_rewriter::mk_bv_udiv_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) { numeral r1, r2; unsigned bv_size; TRACE("bv_udiv", tout << "hi_div0: " << hi_div0 << "\n";); TRACE("udiv2mul", tout << mk_ismt2_pp(arg2, m()) << " udiv2mul: " << m_udiv2mul << "\n";); if (is_numeral(arg2, r2, bv_size)) { r2 = m_util.norm(r2, bv_size); if (r2.is_zero()) { if (!hi_div0) { result = m().mk_app(get_fid(), OP_BUDIV0, arg1); return BR_DONE; } else { // The "hardware interpretation" for (bvudiv x 0) is #xffff result = mk_numeral(m_util.power_of_two(bv_size) - numeral(1), bv_size); return BR_DONE; } } if (r2.is_one()) { result = arg1; return BR_DONE; } if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) { r1 = m_util.norm(r1, bv_size); result = mk_numeral(machine_div(r1, r2), bv_size); return BR_DONE; } unsigned shift; if (r2.is_power_of_two(shift)) { result = m().mk_app(get_fid(), OP_BLSHR, arg1, mk_numeral(shift, bv_size)); return BR_REWRITE1; } if (m_udiv2mul) { TRACE("udiv2mul", tout << "using udiv2mul\n";); numeral inv_r2; if (m_util.mult_inverse(r2, bv_size, inv_r2)) { result = m().mk_app(get_fid(), OP_BMUL, mk_numeral(inv_r2, bv_size), arg1); return BR_REWRITE1; } } result = m().mk_app(get_fid(), OP_BUDIV_I, arg1, arg2); return BR_DONE; } if (hi_div0) { result = m().mk_app(get_fid(), OP_BUDIV_I, arg1, arg2); return BR_DONE; } bv_size = get_bv_size(arg2); result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)), m().mk_app(get_fid(), OP_BUDIV0, arg1), m().mk_app(get_fid(), OP_BUDIV_I, arg1, arg2)); TRACE("bv_udiv", tout << mk_ismt2_pp(arg1, m()) << "\n" << mk_ismt2_pp(arg2, m()) << "\n---->\n" << mk_ismt2_pp(result, m()) << "\n";); return BR_REWRITE2; } br_status bv_rewriter::mk_bv_srem_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) { numeral r1, r2; unsigned bv_size; if (is_numeral(arg2, r2, bv_size)) { r2 = m_util.norm(r2, bv_size, true); if (r2.is_zero()) { if (!hi_div0) { result = m().mk_app(get_fid(), OP_BSREM0, arg1); return BR_DONE; } else { // The "hardware interpretation" for (bvsrem x 0) is x result = arg1; return BR_DONE; } } if (r2.is_one()) { result = mk_numeral(0, bv_size); return BR_DONE; } if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) { r1 = m_util.norm(r1, bv_size, true); result = mk_numeral(r1 % r2, bv_size); return BR_DONE; } result = m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2); return BR_DONE; } if (hi_div0) { result = m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2); return BR_DONE; } bv_size = get_bv_size(arg2); result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)), m().mk_app(get_fid(), OP_BSREM0, arg1), m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2)); return BR_REWRITE2; } bool bv_rewriter::is_minus_one_core(expr * arg) const { numeral r; unsigned bv_size; if (is_numeral(arg, r, bv_size)) { return r == (m_util.power_of_two(bv_size) - numeral(1)); } return false; } bool bv_rewriter::is_x_minus_one(expr * arg, expr * & x) { if (is_add(arg) && to_app(arg)->get_num_args() == 2) { if (is_minus_one_core(to_app(arg)->get_arg(0))) { x = to_app(arg)->get_arg(1); return true; } if (is_minus_one_core(to_app(arg)->get_arg(1))) { x = to_app(arg)->get_arg(0); return true; } } return false; } br_status bv_rewriter::mk_bv_urem_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) { numeral r1, r2; unsigned bv_size; bool is_num1 = is_numeral(arg1, r1, bv_size); if (is_numeral(arg2, r2, bv_size)) { r2 = m_util.norm(r2, bv_size); if (r2.is_zero()) { if (!hi_div0) { result = m().mk_app(get_fid(), OP_BUREM0, arg1); return BR_DONE; } else { // The "hardware interpretation" for (bvurem x 0) is x result = arg1; return BR_DONE; } } if (r2.is_one()) { result = mk_numeral(0, bv_size); return BR_DONE; } if (!r2.is_zero() && is_num1) { r1 = m_util.norm(r1, bv_size); r1 %= r2; result = mk_numeral(r1, bv_size); return BR_DONE; } unsigned shift; if (r2.is_power_of_two(shift)) { expr * args[2] = { mk_numeral(0, bv_size - shift), m_mk_extract(shift-1, 0, arg1) }; result = m_util.mk_concat(2, args); return BR_REWRITE2; } result = m().mk_app(get_fid(), OP_BUREM_I, arg1, arg2); return BR_DONE; } if (!hi_div0) { // urem(0, x) ==> ite(x = 0, urem0(x), 0) if (is_num1 && r1.is_zero()) { expr * zero = arg1; result = m().mk_ite(m().mk_eq(arg2, zero), m().mk_app(get_fid(), OP_BUREM0, zero), zero); return BR_REWRITE2; } // urem(x - 1, x) ==> ite(x = 0, urem0(x-1), x - 1) ==> ite(x = 0, urem0(-1), x - 1) expr * x; if (is_x_minus_one(arg1, x) && x == arg2) { bv_size = get_bv_size(arg1); expr * x_minus_1 = arg1; expr * minus_one = mk_numeral(m_util.power_of_two(bv_size) - numeral(1), bv_size); result = m().mk_ite(m().mk_eq(x, mk_numeral(0, bv_size)), m().mk_app(get_fid(), OP_BUREM0, minus_one), x_minus_1); return BR_REWRITE2; } } else { // Remark: when HI_DIV0=true is used, (bvurem x 0) --> x if (is_num1 && r1.is_zero()) { // urem(0, x) --> 0 expr * zero = arg1; result = zero; return BR_DONE; } // urem(x - 1, x) --> x - 1 expr * x; if (is_x_minus_one(arg1, x) && x == arg2) { expr * x_minus_1 = arg1; result = x_minus_1; return BR_DONE; } } if (hi_div0) { result = m().mk_app(get_fid(), OP_BUREM_I, arg1, arg2); return BR_DONE; } bv_size = get_bv_size(arg2); result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)), m().mk_app(get_fid(), OP_BUREM0, arg1), m().mk_app(get_fid(), OP_BUREM_I, arg1, arg2)); return BR_REWRITE2; } br_status bv_rewriter::mk_bv_smod_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) { numeral r1, r2; unsigned bv_size; bool is_num1 = is_numeral(arg1, r1, bv_size); if (is_num1) { r1 = m_util.norm(r1, bv_size, true); if (r1.is_zero()) { result = m().mk_app(get_fid(), OP_BUREM, arg1, arg2); return BR_REWRITE1; } } if (is_numeral(arg2, r2, bv_size)) { r2 = m_util.norm(r2, bv_size, true); if (r2.is_zero()) { if (!hi_div0) result = m().mk_app(get_fid(), OP_BSMOD0, arg1); else result = arg1; return BR_DONE; } if (is_num1) { numeral abs_r1 = m_util.norm(abs(r1), bv_size); numeral abs_r2 = m_util.norm(abs(r2), bv_size); numeral u = m_util.norm(abs_r1 % abs_r2, bv_size); numeral r; if (u.is_zero()) r = u; else if (r1.is_pos() && r2.is_pos()) r = u; else if (r1.is_neg() && r2.is_pos()) r = m_util.norm(-u + r2, bv_size); else if (r1.is_pos() && r2.is_neg()) r = m_util.norm(u + r2, bv_size); else r = m_util.norm(-u, bv_size); result = mk_numeral(r, bv_size); return BR_DONE; } if (r2.is_one()) { // (bvsmod x 1) --> 0 result = mk_numeral(0, bv_size); return BR_REWRITE2; } } if (hi_div0) { result = m().mk_app(get_fid(), OP_BSMOD_I, arg1, arg2); return BR_DONE; } bv_size = get_bv_size(arg2); result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)), m().mk_app(get_fid(), OP_BSMOD0, arg1), m().mk_app(get_fid(), OP_BSMOD_I, arg1, arg2)); return BR_REWRITE2; } br_status bv_rewriter::mk_int2bv(unsigned bv_size, expr * arg, expr_ref & result) { numeral val; bool is_int; if (m_autil.is_numeral(arg, val, is_int)) { val = m_util.norm(val, bv_size); result = mk_numeral(val, bv_size); return BR_DONE; } // (int2bv (bv2int x)) --> x if (m_util.is_bv2int(arg) && bv_size == get_bv_size(to_app(arg)->get_arg(0))) { result = to_app(arg)->get_arg(0); return BR_DONE; } return BR_FAILED; } br_status bv_rewriter::mk_bv2int(expr * arg, expr_ref & result) { numeral v; unsigned sz; if (is_numeral(arg, v, sz)) { result = m_autil.mk_numeral(v, true); return BR_DONE; } // TODO: add other simplifications return BR_FAILED; } br_status bv_rewriter::mk_concat(unsigned num_args, expr * const * args, expr_ref & result) { expr_ref_buffer new_args(m()); numeral v1; numeral v2; unsigned sz1, sz2; bool fused_numeral = false; bool expanded = false; bool fused_extract = false; for (unsigned i = 0; i < num_args; i++) { expr * arg = args[i]; expr * prev = 0; if (i > 0) prev = new_args.back(); if (is_numeral(arg, v1, sz1) && prev != 0 && is_numeral(prev, v2, sz2)) { v2 *= m_util.power_of_two(sz1); v2 += v1; new_args.pop_back(); new_args.push_back(mk_numeral(v2, sz1+sz2)); fused_numeral = true; } else if (m_flat && m_util.is_concat(arg)) { unsigned num2 = to_app(arg)->get_num_args(); for (unsigned j = 0; j < num2; j++) { new_args.push_back(to_app(arg)->get_arg(j)); } expanded = true; } else if (m_util.is_extract(arg) && prev != 0 && m_util.is_extract(prev) && to_app(arg)->get_arg(0) == to_app(prev)->get_arg(0) && m_util.get_extract_low(prev) == m_util.get_extract_high(arg) + 1) { // (concat (extract[h1,l1] a) (extract[h2,l2] a)) --> (extract[h1,l2] a) if l1 == h2+1 expr * new_arg = m_mk_extract(m_util.get_extract_high(prev), m_util.get_extract_low(arg), to_app(arg)->get_arg(0)); new_args.pop_back(); new_args.push_back(new_arg); fused_extract = true; } else { new_args.push_back(arg); } } if (!fused_numeral && !expanded && !fused_extract) return BR_FAILED; SASSERT(!new_args.empty()); if (new_args.size() == 1) { result = new_args.back(); return fused_extract ? BR_REWRITE1 : BR_DONE; } result = m_util.mk_concat(new_args.size(), new_args.c_ptr()); if (fused_extract) return BR_REWRITE2; else if (expanded) return BR_REWRITE1; else return BR_DONE; } br_status bv_rewriter::mk_zero_extend(unsigned n, expr * arg, expr_ref & result) { if (n == 0) { result = arg; return BR_DONE; } else { expr * args[2] = { mk_numeral(0, n), arg }; result = m_util.mk_concat(2, args); return BR_REWRITE1; } } br_status bv_rewriter::mk_sign_extend(unsigned n, expr * arg, expr_ref & result) { if (n == 0) { result = arg; return BR_DONE; } numeral r; unsigned bv_size; if (is_numeral(arg, r, bv_size)) { unsigned result_bv_size = bv_size + n; r = m_util.norm(r, bv_size, true); mod(r, m_util.power_of_two(result_bv_size), r); result = mk_numeral(r, result_bv_size); return BR_DONE; } if (m_elim_sign_ext) { unsigned sz = get_bv_size(arg); expr * sign = m_mk_extract(sz-1, sz-1, arg); ptr_buffer args; for (unsigned i = 0; i < n; i++) args.push_back(sign); args.push_back(arg); result = m_util.mk_concat(args.size(), args.c_ptr()); return BR_REWRITE2; } return BR_FAILED; } br_status bv_rewriter::mk_repeat(unsigned n, expr * arg, expr_ref & result) { if (n == 1) { result = arg; return BR_DONE; } ptr_buffer args; for (unsigned i = 0; i < n; i++) args.push_back(arg); result = m_util.mk_concat(args.size(), args.c_ptr()); return BR_REWRITE1; } br_status bv_rewriter::mk_bv_or(unsigned num, expr * const * args, expr_ref & result) { SASSERT(num > 0); if (num == 1) { result = args[0]; return BR_DONE; } unsigned sz = get_bv_size(args[0]); bool flattened = false; ptr_buffer flat_args; if (m_flat) { for (unsigned i = 0; i < num; i++) { expr * arg = args[i]; if (m_util.is_bv_or(arg)) { unsigned num2 = to_app(arg)->get_num_args(); for (unsigned j = 0; j < num2; j++) flat_args.push_back(to_app(arg)->get_arg(j)); } else { flat_args.push_back(arg); } } if (flat_args.size() != num) { flattened = true; num = flat_args.size(); args = flat_args.c_ptr(); } } ptr_buffer new_args; expr_fast_mark1 pos_args; expr_fast_mark2 neg_args; bool merged = false; unsigned num_coeffs = 0; numeral v1, v2; for (unsigned i = 0; i < num; i++) { expr * arg = args[i]; if (is_numeral(arg, v2, sz)) { num_coeffs++; v1 = bitwise_or(v1, v2); continue; } if (m_util.is_bv_not(arg)) { expr * atom = to_app(arg)->get_arg(0); if (pos_args.is_marked(atom)) { result = mk_numeral(m_util.power_of_two(sz) - numeral(1), sz); return BR_DONE; } else if (neg_args.is_marked(atom)) { merged = true; continue; } neg_args.mark(atom, true); new_args.push_back(arg); } else { if (pos_args.is_marked(arg)) { merged = true; continue; } else if (neg_args.is_marked(arg)) { result = mk_numeral(m_util.power_of_two(sz) - numeral(1), sz); return BR_DONE; } pos_args.mark(arg, true); new_args.push_back(arg); } } if (v1 == m_util.power_of_two(sz) - numeral(1)) { result = mk_numeral(v1, sz); return BR_DONE; } // Simplifications of the form: // (bvor (concat x #x00) (concat #x00 y)) --> (concat x y) if (new_args.size() == 2 && num_coeffs == 0 && m_util.is_concat(new_args[0]) && m_util.is_concat(new_args[1])) { app * concat1 = to_app(new_args[0]); app * concat2 = to_app(new_args[1]); unsigned i = 0; for (i = 0; i < sz; i++) if (!is_zero_bit(concat1, i) && !is_zero_bit(concat2, i)) break; if (i == sz) { // is target ptr_buffer non_zero_args; int j = sz; j--; while (j >= 0) { int high = j; while (j >= 0 && is_zero_bit(concat1, j)) --j; if (j != high) non_zero_args.push_back(m_mk_extract(high, j+1, concat2)); high = j; while (j >= 0 && is_zero_bit(concat2, j)) --j; if (j != high) non_zero_args.push_back(m_mk_extract(high, j+1, concat1)); } result = m_util.mk_concat(non_zero_args.size(), non_zero_args.c_ptr()); return BR_REWRITE2; } } if (!v1.is_zero() && new_args.size() == 1) { v1 = m_util.norm(v1, sz); #ifdef _TRACE numeral old_v1 = v1; #endif // OR is a mask expr * t = new_args[0]; numeral two(2); ptr_buffer exs; unsigned low = 0; unsigned i = 0; while (i < sz) { while (i < sz && mod(v1, two).is_one()) { i++; div(v1, two, v1); } if (i != low) { unsigned num_sz = i - low; exs.push_back(m_util.mk_numeral(m_util.power_of_two(num_sz) - numeral(1), num_sz)); low = i; } while (i < sz && mod(v1, two).is_zero()) { i++; div(v1, two, v1); } if (i != low) { exs.push_back(m_mk_extract(i-1, low, t)); low = i; } } std::reverse(exs.begin(), exs.end()); result = m_util.mk_concat(exs.size(), exs.c_ptr()); TRACE("mask_bug", tout << "(assert (distinct (bvor (_ bv" << old_v1 << " " << sz << ")\n" << mk_ismt2_pp(t, m()) << ")\n"; tout << mk_ismt2_pp(result, m()) << "))\n";); return BR_REWRITE2; } if (!flattened && !merged && (num_coeffs == 0 || (num_coeffs == 1 && !v1.is_zero()))) { return BR_FAILED; } if (!v1.is_zero()) { new_args.push_back(mk_numeral(v1, sz)); } switch (new_args.size()) { case 0: result = mk_numeral(0, sz); return BR_DONE; case 1: result = new_args[0]; return BR_DONE; default: result = m_util.mk_bv_or(new_args.size(), new_args.c_ptr()); return BR_DONE; } } br_status bv_rewriter::mk_bv_xor(unsigned num, expr * const * args, expr_ref & result) { SASSERT(num > 0); if (num == 1) { result = args[0]; return BR_DONE; } unsigned sz = get_bv_size(args[0]); bool flattened = false; ptr_buffer flat_args; if (m_flat) { for (unsigned i = 0; i < num; i++) { expr * arg = args[i]; if (m_util.is_bv_xor(arg)) { unsigned num2 = to_app(arg)->get_num_args(); for (unsigned j = 0; j < num2; j++) flat_args.push_back(to_app(arg)->get_arg(j)); } else { flat_args.push_back(arg); } } if (flat_args.size() != num) { flattened = true; num = flat_args.size(); args = flat_args.c_ptr(); } } expr_fast_mark1 pos_args; expr_fast_mark2 neg_args; bool merged = false; numeral v1, v2; unsigned num_coeffs = 0; for (unsigned i = 0; i < num; i++) { expr * arg = args[i]; if (is_numeral(arg, v2, sz)) { v1 = bitwise_xor(v1, v2); num_coeffs++; continue; } if (m_util.is_bv_not(arg)) { expr * atom = to_app(arg)->get_arg(0); if (neg_args.is_marked(atom)) { neg_args.mark(atom, false); merged = true; } else if (pos_args.is_marked(atom)) { pos_args.mark(atom, false); merged = true; v1 = bitwise_xor(v1, m_util.power_of_two(sz) - numeral(1)); } else { neg_args.mark(atom, true); } } else { if (pos_args.is_marked(arg)) { pos_args.mark(arg, false); merged = true; } else if (neg_args.is_marked(arg)) { neg_args.mark(arg, false); merged = true; v1 = bitwise_xor(v1, m_util.power_of_two(sz) - numeral(1)); } else { pos_args.mark(arg, true); } } } if (!merged && !flattened && (num_coeffs == 0 || (num_coeffs == 1 && !v1.is_zero() && v1 != (m_util.power_of_two(sz) - numeral(1))))) return BR_FAILED; ptr_buffer new_args; expr_ref c(m()); // may not be used if (!v1.is_zero()) { c = mk_numeral(v1, sz); new_args.push_back(c); } for (unsigned i = 0; i < num; i++) { expr * arg = args[i]; if (is_numeral(arg)) continue; if (m_util.is_bv_not(arg)) { expr * atom = to_app(arg)->get_arg(0); if (neg_args.is_marked(atom)) { new_args.push_back(arg); neg_args.mark(atom, false); } } else if (pos_args.is_marked(arg)) { new_args.push_back(arg); pos_args.mark(arg, false); } } switch (new_args.size()) { case 0: result = mk_numeral(0, sz); return BR_DONE; case 1: result = new_args[0]; return BR_DONE; case 2: if (m_util.is_allone(new_args[0])) { result = m_util.mk_bv_not(new_args[1]); return BR_DONE; } __fallthrough; default: result = m_util.mk_bv_xor(new_args.size(), new_args.c_ptr()); return BR_DONE; } } br_status bv_rewriter::mk_bv_not(expr * arg, expr_ref & result) { if (m_util.is_bv_not(arg)) { result = to_app(arg)->get_arg(0); return BR_DONE; } numeral val; unsigned bv_size; if (is_numeral(arg, val, bv_size)) { val = bitwise_not(bv_size, val); result = mk_numeral(val, bv_size); return BR_DONE; } #if 1 if (m_util.is_concat(arg)) { ptr_buffer new_args; unsigned num = to_app(arg)->get_num_args(); for (unsigned i = 0; i < num; i++) { new_args.push_back(m_util.mk_bv_not(to_app(arg)->get_arg(i))); } result = m_util.mk_concat(new_args.size(), new_args.c_ptr()); return BR_REWRITE2; } #endif return BR_FAILED; } br_status bv_rewriter::mk_bv_and(unsigned num, expr * const * args, expr_ref & result) { ptr_buffer new_args; for (unsigned i = 0; i < num; i++) { new_args.push_back(m_util.mk_bv_not(args[i])); } SASSERT(num == new_args.size()); result = m_util.mk_bv_not(m_util.mk_bv_or(new_args.size(), new_args.c_ptr())); return BR_REWRITE3; } br_status bv_rewriter::mk_bv_nand(unsigned num, expr * const * args, expr_ref & result) { ptr_buffer new_args; for (unsigned i = 0; i < num; i++) { new_args.push_back(m_util.mk_bv_not(args[i])); } result = m_util.mk_bv_or(new_args.size(), new_args.c_ptr()); return BR_REWRITE2; } br_status bv_rewriter::mk_bv_nor(unsigned num, expr * const * args, expr_ref & result) { result = m_util.mk_bv_not(m_util.mk_bv_or(num, args)); return BR_REWRITE2; } br_status bv_rewriter::mk_bv_xnor(unsigned num_args, expr * const * args, expr_ref & result) { result = m_util.mk_bv_not(m_util.mk_bv_xor(num_args, args)); return BR_REWRITE2; } br_status bv_rewriter::mk_bv_rotate_left(unsigned n, expr * arg, expr_ref & result) { unsigned sz = get_bv_size(arg); SASSERT(sz > 0); n = n % sz; if (n == 0 || sz == 1) { result = arg; return BR_DONE; } expr * args[2] = { m_mk_extract(sz - n - 1, 0, arg), m_mk_extract(sz - 1, sz - n, arg) }; result = m_util.mk_concat(2, args); return BR_REWRITE2; } br_status bv_rewriter::mk_bv_rotate_right(unsigned n, expr * arg, expr_ref & result) { unsigned sz = get_bv_size(arg); SASSERT(sz > 0); n = n % sz; return mk_bv_rotate_left(sz - n, arg, result); } br_status bv_rewriter::mk_bv_ext_rotate_left(expr * arg1, expr * arg2, expr_ref & result) { numeral r2; unsigned bv_size; if (is_numeral(arg2, r2, bv_size)) { unsigned shift = static_cast((r2 % numeral(bv_size)).get_uint64() % static_cast(bv_size)); return mk_bv_rotate_left(shift, arg1, result); } return BR_FAILED; } br_status bv_rewriter::mk_bv_ext_rotate_right(expr * arg1, expr * arg2, expr_ref & result) { numeral r2; unsigned bv_size; if (is_numeral(arg2, r2, bv_size)) { unsigned shift = static_cast((r2 % numeral(bv_size)).get_uint64() % static_cast(bv_size)); return mk_bv_rotate_right(shift, arg1, result); } return BR_FAILED; } br_status bv_rewriter::mk_bv_redor(expr * arg, expr_ref & result) { if (is_numeral(arg)) { result = m_util.is_zero(arg) ? mk_numeral(0, 1) : mk_numeral(1, 1); return BR_DONE; } return BR_FAILED; } br_status bv_rewriter::mk_bv_redand(expr * arg, expr_ref & result) { numeral r; unsigned bv_size; if (is_numeral(arg, r, bv_size)) { result = (r == m_util.power_of_two(bv_size) - numeral(1)) ? mk_numeral(1, 1) : mk_numeral(0, 1); return BR_DONE; } return BR_FAILED; } br_status bv_rewriter::mk_bv_comp(expr * arg1, expr * arg2, expr_ref & result) { if (arg1 == arg2) { result = mk_numeral(1,1); return BR_DONE; } if (is_numeral(arg1) && is_numeral(arg2)) { SASSERT(arg1 != arg2); result = mk_numeral(0, 1); return BR_DONE; } result = m().mk_ite(m().mk_eq(arg1, arg2), mk_numeral(1, 1), mk_numeral(0, 1)); return BR_REWRITE2; } br_status bv_rewriter::mk_bv_add(unsigned num_args, expr * const * args, expr_ref & result) { br_status st = mk_add_core(num_args, args, result); if (st != BR_FAILED && st != BR_DONE) return st; #if 0 expr * x; expr * y; if (st == BR_FAILED && num_args == 2) { x = args[0]; y = args[1]; } else if (st == BR_DONE && is_add(result) && to_app(result)->get_num_args() == 2) { x = to_app(result)->get_arg(0); y = to_app(result)->get_arg(1); } else { return st; } if (!m_util.is_concat(x) && !is_numeral(x)) return st; if (!m_util.is_concat(y) && !is_numeral(y)) return st; unsigned sz = get_bv_size(x); for (unsigned i = 0; i < sz; i++) { if (!is_zero_bit(x,i) && !is_zero_bit(y,i)) return st; } result = m().mk_app(get_fid(), OP_BOR, x, y); return BR_REWRITE1; #else unsigned _num_args; expr * const * _args; if (st == BR_FAILED) { _num_args = num_args; _args = args; } else if (st == BR_DONE && is_add(result)) { _num_args = to_app(result)->get_num_args(); _args = to_app(result)->get_args(); } else { return st; } if (_num_args < 2) return st; unsigned sz = get_bv_size(_args[0]); for (unsigned i = 0; i < sz; i++) { bool found_non_zero = false; for (unsigned j = 0; j < _num_args; j++) { if (!is_zero_bit(_args[j], i)) { // at most one of the arguments may have a non-zero bit. if (found_non_zero) return st; found_non_zero = true; } } } result = m().mk_app(get_fid(), OP_BOR, _num_args, _args); return BR_REWRITE1; #endif } bool bv_rewriter::is_zero_bit(expr * x, unsigned idx) { numeral val; unsigned bv_size; loop: if (is_numeral(x, val, bv_size)) { if (val.is_zero()) return true; div(val, m_util.power_of_two(idx), val); return (val % numeral(2)).is_zero(); } if (m_util.is_concat(x)) { unsigned i = to_app(x)->get_num_args(); while (i > 0) { --i; expr * y = to_app(x)->get_arg(i); bv_size = get_bv_size(y); if (bv_size <= idx) { idx -= bv_size; } else { x = y; goto loop; } } UNREACHABLE(); } return false; } br_status bv_rewriter::mk_bv_mul(unsigned num_args, expr * const * args, expr_ref & result) { br_status st = mk_mul_core(num_args, args, result); if (st != BR_FAILED && st != BR_DONE) return st; expr * x; expr * y; if (st == BR_FAILED && num_args == 2) { x = args[0]; y = args[1]; } else if (st == BR_DONE && is_mul(result) && to_app(result)->get_num_args() == 2) { x = to_app(result)->get_arg(0); y = to_app(result)->get_arg(1); } else { return st; } if (m_mul2concat) { numeral v; unsigned bv_size; unsigned shift; if (is_numeral(x, v, bv_size) && v.is_power_of_two(shift)) { SASSERT(shift >= 1); expr * args[2] = { m_mk_extract(bv_size-shift-1, 0, y), mk_numeral(0, shift) }; result = m_util.mk_concat(2, args); return BR_REWRITE2; } } return st; } br_status bv_rewriter::mk_bit2bool(expr * lhs, expr * rhs, expr_ref & result) { unsigned sz = get_bv_size(lhs); if (sz != 1) return BR_FAILED; if (is_numeral(lhs)) std::swap(lhs, rhs); numeral v; if (!is_numeral(rhs, v, sz)) return BR_FAILED; if (is_numeral(lhs)) { SASSERT(is_numeral(rhs)); result = lhs == rhs ? m().mk_true() : m().mk_false(); return BR_DONE; } if (m().is_ite(lhs)) { result = m().mk_ite(to_app(lhs)->get_arg(0), m().mk_eq(to_app(lhs)->get_arg(1), rhs), m().mk_eq(to_app(lhs)->get_arg(2), rhs)); return BR_REWRITE2; } if (m_util.is_bv_not(lhs)) { SASSERT(v.is_one() || v.is_zero()); result = m().mk_eq(to_app(lhs)->get_arg(0), mk_numeral(numeral(1) - v, 1)); return BR_REWRITE1; } bool is_one = v.is_one(); expr_ref bit1(m()); bit1 = is_one ? rhs : mk_numeral(numeral(1), 1); if (m_util.is_bv_or(lhs)) { ptr_buffer new_args; unsigned num = to_app(lhs)->get_num_args(); for (unsigned i = 0; i < num; i++) { new_args.push_back(m().mk_eq(to_app(lhs)->get_arg(i), bit1)); } result = m().mk_or(new_args.size(), new_args.c_ptr()); if (is_one) { return BR_REWRITE2; } else { result = m().mk_not(result); return BR_REWRITE3; } } if (m_util.is_bv_xor(lhs)) { ptr_buffer new_args; unsigned num = to_app(lhs)->get_num_args(); for (unsigned i = 0; i < num; i++) { new_args.push_back(m().mk_eq(to_app(lhs)->get_arg(i), bit1)); } // TODO: bool xor is not flat_assoc... must fix that. result = m().mk_xor(new_args.size(), new_args.c_ptr()); if (is_one) { return BR_REWRITE2; } else { result = m().mk_not(result); return BR_REWRITE3; } } return BR_FAILED; } br_status bv_rewriter::mk_blast_eq_value(expr * lhs, expr * rhs, expr_ref & result) { unsigned sz = get_bv_size(lhs); if (sz == 1) return BR_FAILED; TRACE("blast_eq_value", tout << "sz: " << sz << "\n" << mk_ismt2_pp(lhs, m()) << "\n";); if (is_numeral(lhs)) std::swap(lhs, rhs); numeral v; if (!is_numeral(rhs, v, sz)) return BR_FAILED; if (!m_util.is_bv_or(lhs) && !m_util.is_bv_xor(lhs) && !m_util.is_bv_not(lhs)) return BR_FAILED; numeral two(2); ptr_buffer new_args; for (unsigned i = 0; i < sz; i++) { bool bit0 = (v % two).is_zero(); new_args.push_back(m().mk_eq(m_mk_extract(i,i, lhs), mk_numeral(bit0 ? 0 : 1, 1))); div(v, two, v); } result = m().mk_and(new_args.size(), new_args.c_ptr()); return BR_REWRITE3; } br_status bv_rewriter::mk_eq_concat(expr * lhs, expr * rhs, expr_ref & result) { SASSERT(m_util.is_concat(lhs) || m_util.is_concat(rhs)); unsigned num1, num2; expr * const * args1, * const * args2; if (m_util.is_concat(lhs)) { num1 = to_app(lhs)->get_num_args(); args1 = to_app(lhs)->get_args(); } else { num1 = 1; args1 = &lhs; } if (m_util.is_concat(rhs)) { num2 = to_app(rhs)->get_num_args(); args2 = to_app(rhs)->get_args(); } else { num2 = 1; args2 = &rhs; } ptr_buffer new_eqs; unsigned low1 = 0; unsigned low2 = 0; unsigned i1 = num1; unsigned i2 = num2; while (i1 > 0 && i2 > 0) { expr * arg1 = args1[i1-1]; expr * arg2 = args2[i2-1]; unsigned sz1 = get_bv_size(arg1); unsigned sz2 = get_bv_size(arg2); SASSERT(low1 < sz1 && low2 < sz2); unsigned rsz1 = sz1 - low1; unsigned rsz2 = sz2 - low2; if (rsz1 == rsz2) { new_eqs.push_back(m().mk_eq(m_mk_extract(sz1 - 1, low1, arg1), m_mk_extract(sz2 - 1, low2, arg2))); low1 = 0; low2 = 0; --i1; --i2; continue; } else if (rsz1 < rsz2) { new_eqs.push_back(m().mk_eq(m_mk_extract(sz1 - 1, low1, arg1), m_mk_extract(rsz1 + low2 - 1, low2, arg2))); low1 = 0; low2 += rsz1; --i1; } else { new_eqs.push_back(m().mk_eq(m_mk_extract(rsz2 + low1 - 1, low1, arg1), m_mk_extract(sz2 - 1, low2, arg2))); low1 += rsz2; low2 = 0; --i2; } } SASSERT(i1 == 0 && i2 == 0); SASSERT(new_eqs.size() >= 1); result = m().mk_and(new_eqs.size(), new_eqs.c_ptr()); return BR_REWRITE3; } bool bv_rewriter::is_concat_split_target(expr * t) const { return m_split_concat_eq || m_util.is_concat(t) || m_util.is_numeral(t) || m_util.is_bv_or(t); } bool bv_rewriter::is_minus_one_times_t(expr * arg) { expr * t1, * t2; return (m_util.is_bv_mul(arg, t1, t2) && is_minus_one(t1)); } void bv_rewriter::mk_t1_add_t2_eq_c(expr * t1, expr * t2, expr * c, expr_ref & result) { SASSERT(is_numeral(c)); if (is_minus_one_times_t(t1)) result = m().mk_eq(t2, m_util.mk_bv_sub(c, t1)); else result = m().mk_eq(t1, m_util.mk_bv_sub(c, t2)); } br_status bv_rewriter::mk_mul_eq(expr * lhs, expr * rhs, expr_ref & result) { expr * c, * x; numeral c_val, c_inv_val; unsigned sz; if (m_util.is_bv_mul(lhs, c, x) && m_util.is_numeral(c, c_val, sz) && m_util.mult_inverse(c_val, sz, c_inv_val)) { SASSERT(m_util.norm(c_val * c_inv_val, sz).is_one()); numeral rhs_val; // c * x = a if (m_util.is_numeral(rhs, rhs_val, sz)) { // x = c_inv * a result = m().mk_eq(x, m_util.mk_numeral(c_inv_val * rhs_val, sz)); return BR_REWRITE1; } expr * c2, * x2; numeral c2_val; // c * x = c2 * x2 if (m_util.is_bv_mul(rhs, c2, x2) && m_util.is_numeral(c2, c2_val, sz)) { // x = c_inv * c2 * x2 numeral new_c2 = m_util.norm(c_inv_val * c2_val, sz); if (new_c2.is_one()) result = m().mk_eq(x, x2); else result = m().mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val * c2_val, sz), x2)); return BR_REWRITE1; } // c * x = t_1 + ... + t_n // and t_i's have non-unary coefficients (this condition is used to make sure we are actually reducing the number of multipliers). if (m_util.is_bv_add(rhs)) { // Potential problem: this simplification may increase the number of adders by reducing the amount of sharing. unsigned num = to_app(rhs)->get_num_args(); unsigned i; for (i = 0; i < num; i++) { expr * arg = to_app(rhs)->get_arg(i); expr * c2, * x2; if (m_util.is_numeral(arg)) continue; if (m_util.is_bv_mul(arg, c2, x2) && m_util.is_numeral(c2)) continue; break; } if (i == num) { result = m().mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val, sz), rhs)); return BR_REWRITE2; } } } return BR_FAILED; } br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) { if (lhs == rhs) { result = m().mk_true(); return BR_DONE; } if (is_numeral(lhs) && is_numeral(rhs)) { result = m().mk_false(); return BR_DONE; } bool swapped = false; if (is_numeral(lhs)) { swapped = true; std::swap(lhs, rhs); } br_status st; if (m_bit2bool) { st = mk_bit2bool(lhs, rhs, result); if (st != BR_FAILED) return st; } st = mk_mul_eq(lhs, rhs, result); if (st != BR_FAILED) { TRACE("mk_mul_eq", tout << mk_ismt2_pp(lhs, m()) << "\n=\n" << mk_ismt2_pp(rhs, m()) << "\n----->\n" << mk_ismt2_pp(result,m()) << "\n";); return st; } st = mk_mul_eq(rhs, lhs, result); if (st != BR_FAILED) { TRACE("mk_mul_eq", tout << mk_ismt2_pp(lhs, m()) << "\n=\n" << mk_ismt2_pp(rhs, m()) << "\n----->\n" << mk_ismt2_pp(result,m()) << "\n";); return st; } if (m_blast_eq_value) { st = mk_blast_eq_value(lhs, rhs, result); if (st != BR_FAILED) return st; } if (m_util.is_bv_add(lhs) || m_util.is_bv_mul(lhs) || m_util.is_bv_add(rhs) || m_util.is_bv_mul(rhs)) { expr_ref new_lhs(m()); expr_ref new_rhs(m()); st = cancel_monomials(lhs, rhs, false, new_lhs, new_rhs); if (st != BR_FAILED) { if (is_numeral(new_lhs) && is_numeral(new_rhs)) { result = new_lhs == new_rhs ? m().mk_true() : m().mk_false(); return BR_DONE; } } else { new_lhs = lhs; new_rhs = rhs; } // Try to rewrite t1 + t2 = c --> t1 = c - t2 // Reason: it is much cheaper to bit-blast. expr * t1, * t2; if (m_util.is_bv_add(new_lhs, t1, t2) && is_numeral(new_rhs)) { mk_t1_add_t2_eq_c(t1, t2, new_rhs, result); return BR_REWRITE2; } if (m_util.is_bv_add(new_rhs, t1, t2) && is_numeral(new_lhs)) { mk_t1_add_t2_eq_c(t1, t2, new_lhs, result); return BR_REWRITE2; } if (st != BR_FAILED) { result = m().mk_eq(new_lhs, new_rhs); return BR_DONE; } } if ((m_util.is_concat(lhs) && is_concat_split_target(rhs)) || (m_util.is_concat(rhs) && is_concat_split_target(lhs))) return mk_eq_concat(lhs, rhs, result); if (swapped) { result = m().mk_eq(lhs, rhs); return BR_DONE; } return BR_FAILED; } br_status bv_rewriter::mk_mkbv(unsigned num, expr * const * args, expr_ref & result) { if (m_mkbv2num) { unsigned i; for (i = 0; i < num; i++) if (!m().is_true(args[i]) && !m().is_false(args[i])) return BR_FAILED; numeral val; numeral two(2); i = num; while (i > 0) { --i; val *= two; if (m().is_true(args[i])) val++; } result = mk_numeral(val, num); return BR_DONE; } return BR_FAILED; } template class poly_rewriter;