
Z3: User Propagator

Clemens Eisenhofer

Experience report, in joint work with Nikolaj Bjørner

In the following we will have a look at Z3’s user propagator feature. Defining
custom propagators allow us to register callbacks that are called during solving.
As we need to know to some extend how SMT solvers work internally we will
start with a brief discussion how solving is done.

1 Background

SMT solvers mostly decompose the input problem into a propositional SAT
problem and a ”structureless” theory reasoning problem. We can convert any
problem into a propositional formula by replacing complex first-order literals
by propositional variables. For example, ¬((x + 1 = y ∧ y = 2 ∗ x) ⇒ (x = 1))
could be translated into ¬((a ∧ b) ⇒ c). This problem will be handed over
to an ordinary SAT solver that either gives us a model or tells us that this
formula is unsatisfiable. If the result is unsatisfible we are done as this also
means that the original SMT formula is unsatisfiable. However, the inverse
direction is not true. Although the example from before is in fact unsatisfiable
(w.r.t. integer arithmetic) we can get a model for the propositional skeleton. In
this example we can get a 7→ 1, b 7→ 1, c 7→ 0. With this model we construct a
pure conjunctive SMT formula that asks explicitly if this assignment is viable:
x+ 1 = y∧ y = 2 ∗x∧x 6= 1. Now the SMT solver can ask a decision procedure
if it is possible to and what concrete values can be assigned to the constants.
If we get a positive answer we are done and can return a model to the user.
Otherwise we found out that at least this assignment is not possible and we have
to find another one. We can now simply add to our propositional skeleton a
clause that asserts that we want to exclude this assignment. In our toy example
this would mean our new SAT formula is: ¬((a∧ b)⇒ c)∧ (¬a∨¬n∨ c) which
is now unsatisfiable.

But not all parts of a SMT formula that seem non-propositional have to be
processed by the dedicated decision procedure. Bitvectors (i.e., integers of a
fixed size), for example, can be bitblasted by turning every bit into a propo-
sitional constant. Formulas containing only bitvector arithmetic and proposi-
tional variables would not even require a separate decision procedure and could
be solved solely by the SAT solver.

Let us now briefly also discuss the way modern SAT solvers work. Most
of them use conflict driven clause learning (CDCL) which is a derivative of

1



the DPLL algorithm. In a nutshell: The solver converts the formula into a
conjunctive normal form (CNF) and then tries to propagate unit clauses as
good as possible. If there is nothing more to propagate it guesses a truth-
assignment for a variable and proceeds propagating. We consider a very simple
example: We want to check (x ∨ y) ∧ (x ∨ z) ∧ (¬y ∨ ¬z) for satisfiability. We
will go through the first steps of solving the formula with CDCL.

Figure 1: CDCL for (x ∨ y) ∧ (x ∨ z) ∧ (¬y ∨ ¬z)

Initially, as there is no unit clause we need to start guessing and assign x
to 0. (This is a very bad decision but do not forget that this is an example.)
As this is an arbitrary guess we potentially have to revert this step later via

2



backtracking. We push the current state and fix the value of x to 0 (Image 1).
As we need to satisfy clause c1 somehow and we already know that x 7→ 0 does
not satisfy it we need to set y to 1 (Image 2). In other words: We need to make
this decision and therefore we do not push the current state (as we won’t need
to backtrack to this particular state). We do the same for variable z and set
it to 1 as well (Image 3). Again, this is a completely deterministic step. This,
however, contradicts clause c3 (Image 4). We now have to backtrack by undoing
the previous decisions. (i.e., we pop the last state. In CDCL we can sometimes
even pop multiple decisions at once.) As the name conflict driven clause learning
indicates we now analyse our contradiction. We want to separate the most recent
decision from the contradictory node K. By propositional resolution along the
path between the node x 7→ 0@1 and the node K we construct the formula x∨x
which is equivalent to x. Adding this clause eliminates the problematic path to
the contradiction globally in our problem. So we add this clause to our clause
set, clear the problematic part of the graph, and proceed.

2 Done with the background.
Let’s start with the foreground!

But let us come back to Z3’s user propagator: We can register functions that are
called if some of the previously mentioned events occur. We get notified if the
solver makes nondeterministic decisions (push) or reverts them (pop). We can
also get notified as soon as a value is fixed during the CDCL process. However,
this does not necessarily mean that every decision the solver makes corresponds
to fixing a variable. If we consider bitvectors the fixed -event is only called as
soon as all bits of the corresponding bitvector are set. We then can also read
off the current numerical candidate value of the bitvector.

You might now ask ”Fine, we can observe what the solver does. What’s the
point?”

We can not only observe what is done but also actively interfere and guide
the solver. For example: We can tell the solver during its model search that
there is a contradiction between some variables. i.e., we can manually introduce
contradictory nodes or tell the solver to learn new formulas. In terms of our
CDCL example before this means connecting variable assignment nodes like
y 7→ 1@1 to a contradictory node which forces the CDCL solver to backtrack.

3 N-Queens

To make this less abstract we will consider a concrete C++ example. Our
task: We want to count the number of solutions for the n-queens problem
(https://en.wikipedia.org/wiki/Eight_queens_puzzle) on a n × n chess
board. The way enumerating/counting solutions in Z3 is mostly implemented
is quite simple: We find a model and then block it by adding a blocking clause.
Then we request a new model until the solver cannot find more.

3

 https://en.wikipedia.org/wiki/Eight_queens_puzzle


To demonstrate the propagator in combination with bitvectors we use the
following encoding:

Every line has to contain a single queen somewhere. We, therefore, define
for every line i (0 ≤ i < n) a variable qi that represents the position of the
queen in line i.

std::vector <z3::expr > queens;

int bits = log2i(n) + 1;

for (unsigned i = 0; i < n; i++) {

queens.push_back(context.bv_const(

("q"s + to_string(i)). c_str(), bits ));

}

We, furthermore, have the following assertions:

• For every queen qi: 0 ≤ qi < n (Queens have to be on the board.):

for (unsigned i = 0; i < n; i++) {

solver.add(z3::uge(queens[i], 0));

solver.add(z3::ule(queens[i], n - 1));

}

• distinct({q1, . . . qn}) (Queens cannot attack vertically.):

z3:: expr_vector distinct(context );

for (const z3::expr & queen : queens) {

distinct.push_back(queen );

}

solver.add(z3:: distinct(distinct ));

• For every position 1 ≤ i < j ≤ n : j − i 6= qj − qi ∧ j − i 6= qi− qj (Queens
cannot attack diagonal.):

for (int i = 0; i < n; i++) {

for (int j = i + 1; j < n; j++) {

solver.add((j - i) !=

(queens[j] - queens[i]));

solver.add((j - i) !=

(queens[i] - queens[j]));

}

}

It is crucial, that we are actually dealing with a SAT problem.
Say we get a model: {q1 7→ v1, . . . , qn 7→ vn}. We can simply assert addi-

tionally q1 6= v1 ∨ . . . ∨ qn 6= vn to get a different model. We repeat this until
we get unsatisfiable as a result.

4



Although this process works well, it turns out that we can speed up quite
a lot by using a custom propagator. We define a class user propagator. The
idea is very simple. We wait until the solver finds a complete truth-assignment
to all variables and then add a contradictory node that forces the solver to come
up with another model. Officially the solver will not find a single model as we
always claim that the solver came up with an invalid one because the assignment
of the variables contradict each other.

So, how does it work?

As not all of Z3’s solvers support user propagators (in particular the default
solver does not) we have to use a simple one. Precisely: Z3’s ”Simple Solver”.

z3:: solver solver(ctx , Z3_mk_simple_solver(context ));

We then mark all those subterms in our formula that should be tracked by
the propagator. We mark a term by calling ”add” which assigns a unique id to
the term. From this point on we can talk about the value of the subterm via
this identifier.

for (int i = 0; i < queens.size (); i++) {

unsigned id = propagator ->add(queens[i]);

idMapping[id] = i;

}

We now have to register two functions. One that is called as soon as a
constant’s value is fixed (fixed) and one that is called if the solver thinks that
it successfully assigned a value to all constants (final).

this ->register_fixed ();

this ->register_final ();

These two calls register the virtual fixed and final of the class. (Alternatively,
we could also pass a function to these register-functions.) Apart from these two
functions there is a third optional callback function eq that is called whenever
the solver decides that two registered (bitvector) terms are equal. However, we
do not need this function in our example.

Furthermore, we have to override three functions: push, pop, and fresh.
(They are registered automatically as soon as the class is initialised.) The
function fresh is not really interesting for our purpose but we nonetheless have to
implement it. push is called every time the solver makes a decision as discussed
previously. pop is called if the solver backtracks. As it might undo multiple
decisions at once via smart backtracking the function’s argument tells us how
many decisions were discarded at once.

void push() override {

fixedCnt.push(fixedValues.size ());

}

5



void pop(unsigned num_scopes) override {

for (int i = 0; i < num_scopes; i++) {

fixedValues.resize(fixedCnt.top ());

fixedCnt.pop();

}

}

user_propagator_base* fresh(Z3_context ctx) override {

return this; // Won’t be called in our example

}

We use these two functions to keep track of how many constants have been
fixed so far. If the solver tells us that it assigned some value to a bitvector
via calling our fixed -function we need to track this information as we cannot
get it from somewhere else. In the final -method we simply add a contradiction
(conflict) between all the constants assigned and increment a variable counting
the number of models. (For completeness: We can not only add conflicts be-
tween assignments but also introduce new (arbitrary) formulas via the method
propagate.)

However, we also need to remember the actual model although we are not
necessarily interested in it. The problem is that the solver might drop some of
the learned clauses from time to time. The solver does not interpret our manu-
ally inserted contradictions as real assertions but rather as hints. Therefore, we
have to assume that the solver might come up with a model we have received
before. (If we would directly add blocking clauses to the solvers assertions we
would not have this problem.)

void final() override {

this ->conflict(fixedValues.size(),

fixedValues.data ());

if (modelSet.find(currentModel) ==

modelSet.end()) {

// Model wasn’t found so far

solutionId ++;

modelSet.insert(currentModel );

}

}

unsigned bvToInt(z3::expr e) {

return (unsigned)e.get_numeral_int ();

}

void fixed(unsigned id , z3::expr const &e) override {

fixedValues.push_back(id);

currentModel[id_mapping[id]] = bvToInt(e);

}

So, why do we mess around with it if the introduced contradictions are not
even hard? Switching around between Z3 and our program code that adds
blocking clauses is an additional overhead that should not be underestimated.

6



Z3 has to start up and shut down every time at least to some extend. If we add
custom contradictions we do not suffer this have this problem as Z3 has only to
process a single query. At the end of this article we will see if it really payed
off.

Reducing user propagators to a tool for efficiently adding blocking clauses is
of course far too restrictive. We can even build custom theories to some extend.
We will now define a ”n-queens theory”. As we have seen before, a decision
procedure receives a conjunction of literals over a given theory. Unfortunately,
our custom decision procedures are restricted to types like boolean constants
and bitvectors (as the SAT solver can provide us candidate intermediate models
for these sorts). As before we keep track of the solver’s assignments. As soon as
we get a value for a queen’s position we decide if the assignment is feasible. We
check in our C++ program whether a queen can be positioned at the proposed
location by checking against all other queen positions assigned so far. If the
position is illegal we can add a contradiction between the two involved queens.

Precisely we change our fixed -function to:

void fixed(unsigned id , z3::expr const &e) override {

unsigned queenId = id_mapping[id];

unsigned queenPos = bvToInt(e);

if (queenPos >= board) {

this ->conflict(1, &id);

return;

}

for (unsigned fixed : fixedValues) {

unsigned otherId = id_mapping[fixed ];

unsigned otherPos = currentModel[fixed ];

if (queenPos == otherPos) {

const unsigned conflicting [] = {id, fixed };

this ->conflict(2, conflicting );

continue;

}

int diffY = abs((int)queenId - (int)otherId );

int diffX = abs((int)queenPos - (int)otherPos );

if (diffX == diffY) {

const unsigned conflicting [] = {id, fixed };

this ->conflict(2, conflicting );

}

}

fixedValues.push_back(id);

currentModel[id_mapping[id]] = queenPos;

}

Interestingly, we do not have to formally assert anything to do this. Officially
the solver has to assign values to the bitvector constants q1, . . . , qn such that
(assert true) is satisfied. Sounds easy, however, due to our propagator we

7



eliminate all candidate models that do not obey our constraints now expressed
in C++ code. The advantage of this way is that we do not have to deal with
the (expensive) bitvector arithmetic on the SAT level but instead on the C++
code level. This is far more efficient.

4 Results

A lot of words but no time measurements so far. Let’s change that:

n
4 5 6 7 8 9 10 11 12

Def.S. 74.4 37.8 51.6 91.1 210.0 992.6 3233.5 27884.3 631980
Simpl.S. 10.1 17.7 26.4 59.8 162.6 937.9 3326.9 26086.9 597348
Contr. 26.3 13.1 20.6 42.0 112.5 642.2 2192.7 11731.3 77122

Cust.Th. 10.1 12.9 17.8 35.9 44.7 194.3 548.7 3801.6 34096

Figure 2: Runtime for different values of n.
(All measurements in milliseconds and the data is the mean over 5 repetitions.)

We consider 4 different strategies: The first one uses Z3’s default solver and
the bitvector constraints we defined before. The second strategy differs only
in the aspect that we use the simple solver that theoretically supports user
propagators. Both strategies enumerate the models by adding blocking clauses.
The third strategy also uses the constraints but adds conflict nodes internally.
We enumerate the models within Z3. The last strategy does not use any asserts
but adds conflict nodes whenever we found a complete feasible model (model
enumeration) or receive a (partial) assignment that does not satisfy our n-queen
constraints (which we did not specify anywhere).

We can observe two things: Firstly, that finding the number of solutions for
the n-queens problem quickly becomes quite computationally expensive and sec-
ondly that using a user propagator really speeds up the whole process although
we might reconsider the same model.

8



Figure 3: Plot of the runtimes (Logarithmically scaled)

Figure 4: Plot of the runtimes per model

Note that other encodings of the n-queens problem are possible as well. For
example via pseudo-boolean functions, explicit plain propositional logic, and
many more. However, note that other encoding might be more difficult to
deal with for the solver or require a far more complex problem encoding. For
example, a pure propositional encoding is many times larger than our bitvector
encoding/C++ constraints.

9



5 Source Code

The complete (slightly adopted) source code for the n-queens problem discussed
here can be found in Z3’s GitHub repository (examples folder).

10


	Background
	Done with the background.Let's start with the foreground!
	N-Queens
	Results
	Source Code

