/*++ Copyright (c) 2025 Microsoft Corporation Module Name: finite_set_rewriter.h Abstract: Rewriting Simplification for finite sets Sample rewrite rules: set.union s set.empty -> s set.intersect s set.empty -> set.empty set.in x (set.singleton y) -> x = y set.subset(x,y) -> set.intersect(x,y) = x set.union(x, x) -> x set.intersect(x, x) -> x set.difference(x, x) -> set.empty Generally this module implements basic algebraic simplification rules for finite sets where the signature is defined in finite_set_decl_plugin.h. --*/ #pragma once #include "ast/finite_set_decl_plugin.h" #include "ast/rewriter/rewriter_types.h" #include "util/params.h" /** \brief Cheap rewrite rules for finite sets */ class finite_set_rewriter { friend class finite_set_rewriter_test; ast_manager &m; finite_set_util m_util; // Rewrite rules for set operations br_status mk_union(unsigned num_args, expr *const *args, expr_ref &result); br_status mk_intersect(unsigned num_args, expr *const *args, expr_ref &result); br_status mk_difference(expr *arg1, expr *arg2, expr_ref &result); br_status mk_subset(expr *arg1, expr *arg2, expr_ref &result); br_status mk_singleton(expr *arg1, expr_ref &result); br_status mk_in(expr *arg1, expr *arg2, expr_ref &result); br_status mk_size(expr *arg, expr_ref &result); public: finite_set_rewriter(ast_manager & m, params_ref const & p = params_ref()): m(m), m_util(m) { } family_id get_fid() const { return m_util.get_family_id(); } finite_set_util& util() { return m_util; } br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result); br_status mk_eq_core(expr *a, expr *b, expr_ref &result); };