/*++ Copyright (c) 2006 Microsoft Corporation Module Name: mpz.h Abstract: Author: Leonardo de Moura (leonardo) 2010-06-17. Revision History: --*/ #ifndef MPZ_H_ #define MPZ_H_ #include #include "util/util.h" #include "util/small_object_allocator.h" #include "util/trace.h" #include "util/scoped_numeral.h" #include "util/scoped_numeral_vector.h" #include "util/z3_omp.h" #include "util/mpn.h" unsigned u_gcd(unsigned u, unsigned v); uint64_t u64_gcd(uint64_t u, uint64_t v); #ifdef _MP_GMP typedef unsigned digit_t; #endif #ifdef _MSC_VER #pragma warning(disable : 4200) #endif template class mpz_manager; template class mpq_manager; #if !defined(_MP_GMP) && !defined(_MP_MSBIGNUM) && !defined(_MP_INTERNAL) #ifdef _WINDOWS #define _MP_INTERNAL #else #define _MP_GMP #endif #endif #if defined(_MP_MSBIGNUM) typedef size_t digit_t; #elif defined(_MP_INTERNAL) typedef unsigned int digit_t; #endif #ifndef _MP_GMP class mpz_cell { unsigned m_size; unsigned m_capacity; digit_t m_digits[0]; friend class mpz_manager; friend class mpz_manager; friend class mpz_stack; }; #else #include #endif /** \brief Multi-precision integer. If m_kind == mpz_small, it is a small number and the value is stored in m_val. If m_kind == mpz_large, the value is stored in m_ptr and m_ptr != nullptr. m_val contains the sign (-1 negative, 1 positive) under winodws, m_ptr points to a mpz_cell that store the value. */ enum mpz_kind { mpz_small = 0, mpz_large = 1}; enum mpz_owner { mpz_self = 0, mpz_ext = 1}; class mpz { #ifndef _MP_GMP typedef mpz_cell mpz_type; #else typedef mpz_t mpz_type; #endif int m_val; unsigned m_kind:1; unsigned m_owner:1; mpz_type * m_ptr; friend class mpz_manager; friend class mpz_manager; friend class mpq_manager; friend class mpq_manager; friend class mpq; friend class mpbq; friend class mpbq_manager; friend class mpz_stack; mpz & operator=(mpz const & other) { UNREACHABLE(); return *this; } public: mpz(int v):m_val(v), m_kind(mpz_small), m_owner(mpz_self), m_ptr(nullptr) {} mpz():m_val(0), m_kind(mpz_small), m_owner(mpz_self), m_ptr(nullptr) {} mpz(mpz_type* ptr): m_val(0), m_kind(mpz_small), m_owner(mpz_ext), m_ptr(ptr) { SASSERT(ptr);} mpz(mpz && other) : m_val(other.m_val), m_kind(mpz_small), m_owner(mpz_self), m_ptr(nullptr) { std::swap(m_ptr, other.m_ptr); unsigned o = m_owner; m_owner = other.m_owner; other.m_owner = o; unsigned k = m_kind; m_kind = other.m_kind; other.m_kind = k; } void swap(mpz & other) { std::swap(m_val, other.m_val); std::swap(m_ptr, other.m_ptr); unsigned o = m_owner; m_owner = other.m_owner; other.m_owner = o; unsigned k = m_kind; m_kind = other.m_kind; other.m_kind = k; } }; #ifndef _MP_GMP class mpz_stack : public mpz { static const unsigned capacity = 8; unsigned char m_bytes[sizeof(mpz_cell) + sizeof(digit_t) * capacity]; public: mpz_stack():mpz(reinterpret_cast(m_bytes)) { m_ptr->m_capacity = capacity; } }; #else class mpz_stack : public mpz {}; #endif inline void swap(mpz & m1, mpz & m2) { m1.swap(m2); } template class mpz_manager { mutable small_object_allocator m_allocator; mutable omp_nest_lock_t m_lock; #define MPZ_BEGIN_CRITICAL() if (SYNCH) omp_set_nest_lock(&m_lock); #define MPZ_END_CRITICAL() if (SYNCH) omp_unset_nest_lock(&m_lock); mutable mpn_manager m_mpn_manager; #ifndef _MP_GMP unsigned m_init_cell_capacity; mpz m_int_min; static unsigned cell_size(unsigned capacity) { return sizeof(mpz_cell) + sizeof(digit_t) * capacity; } mpz_cell * allocate(unsigned capacity); // make sure that n is a big number and has capacity equal to at least c. void allocate_if_needed(mpz & n, unsigned c) { c = std::max(c, m_init_cell_capacity); if (n.m_ptr == nullptr || capacity(n) < c) { deallocate(n); n.m_val = 1; n.m_kind = mpz_large; n.m_owner = mpz_self; n.m_ptr = allocate(c); } else { n.m_kind = mpz_large; } } void deallocate(bool is_heap, mpz_cell * ptr); // Expand capacity of a while preserving its content. void ensure_capacity(mpz & a, unsigned sz); void normalize(mpz & a); void clear(mpz& n) { reset(n); } /** \brief Set \c a with the value stored at src, and the given sign. \c sz is an overapproximation of the size of the number stored at \c src. */ void set(mpz_cell& src, mpz & a, int sign, unsigned sz); #else // GMP code mutable mpz_t m_tmp, m_tmp2; mutable mpz_t m_two32; mpz_t * m_arg[2]; mutable mpz_t m_uint64_max; mutable mpz_t m_int64_max; mutable mpz_t m_int64_min; mpz_t * allocate() { MPZ_BEGIN_CRITICAL(); mpz_t * cell = reinterpret_cast(m_allocator.allocate(sizeof(mpz_t))); MPZ_END_CRITICAL(); mpz_init(*cell); return cell; } void deallocate(bool is_heap, mpz_t * ptr) { mpz_clear(*ptr); if (is_heap) { MPZ_BEGIN_CRITICAL(); m_allocator.deallocate(sizeof(mpz_t), ptr); MPZ_END_CRITICAL(); } } void clear(mpz& n) { if (n.m_ptr) { mpz_clear(*n.m_ptr); }} #endif void deallocate(mpz& n) { if (n.m_ptr) { deallocate(n.m_owner == mpz_self, n.m_ptr); n.m_ptr = nullptr; n.m_kind = mpz_small; } } mpz m_two64; static int64_t i64(mpz const & a) { return static_cast(a.m_val); } void set_big_i64(mpz & c, int64_t v); void set_i64(mpz & c, int64_t v) { if (v >= INT_MIN && v <= INT_MAX) { c.m_val = static_cast(v); c.m_kind = mpz_small; } else { set_big_i64(c, v); } } void set_big_ui64(mpz & c, uint64_t v); #ifndef _MP_GMP static unsigned capacity(mpz const & c) { return c.m_ptr->m_capacity; } static unsigned size(mpz const & c) { return c.m_ptr->m_size; } static digit_t * digits(mpz const & c) { return c.m_ptr->m_digits; } // Return true if the absolute value fits in a UINT64 static bool is_abs_uint64(mpz const & a) { if (is_small(a)) return true; if (sizeof(digit_t) == sizeof(uint64_t)) return size(a) <= 1; else return size(a) <= 2; } // CAST the absolute value into a UINT64 static uint64_t big_abs_to_uint64(mpz const & a) { SASSERT(is_abs_uint64(a)); SASSERT(!is_small(a)); if (a.m_ptr->m_size == 1) return digits(a)[0]; if (sizeof(digit_t) == sizeof(uint64_t)) // 64-bit machine return digits(a)[0]; else // 32-bit machine return ((static_cast(digits(a)[1]) << 32) | (static_cast(digits(a)[0]))); } class sign_cell { static const unsigned capacity = 2; unsigned char m_bytes[sizeof(mpz_cell) + sizeof(digit_t) * capacity]; mpz m_local; mpz const& m_a; int m_sign; mpz_cell* m_cell; public: sign_cell(mpz_manager& m, mpz const& a); int sign() { return m_sign; } mpz_cell const* cell() { return m_cell; } }; void get_sign_cell(mpz const & a, int & sign, mpz_cell * & cell, mpz_cell* reserve) { if (is_small(a)) { if (a.m_val == INT_MIN) { sign = -1; cell = m_int_min.m_ptr; } else { cell = reserve; cell->m_size = 1; if (a.m_val < 0) { sign = -1; cell->m_digits[0] = -a.m_val; } else { sign = 1; cell->m_digits[0] = a.m_val; } } } else { sign = a.m_val; cell = a.m_ptr; } } #else // GMP code class ensure_mpz_t { mpz_t m_local; mpz_t* m_result; public: ensure_mpz_t(mpz const& a); ~ensure_mpz_t(); mpz_t& operator()() { return *m_result; } }; void mk_big(mpz & a) { if (a.m_ptr == nullptr) { a.m_val = 0; a.m_ptr = allocate(); a.m_owner = mpz_self; } a.m_kind = mpz_large; } #endif #ifndef _MP_GMP template void big_add_sub(mpz const & a, mpz const & b, mpz & c); #endif void big_add(mpz const & a, mpz const & b, mpz & c); void big_sub(mpz const & a, mpz const & b, mpz & c); void big_mul(mpz const & a, mpz const & b, mpz & c); void big_set(mpz & target, mpz const & source); #ifndef _MP_GMP #define QUOT_ONLY 0 #define REM_ONLY 1 #define QUOT_AND_REM 2 #define qr_mode int template void quot_rem_core(mpz const & a, mpz const & b, mpz & q, mpz & r); #endif void big_div_rem(mpz const & a, mpz const & b, mpz & q, mpz & r); void big_div(mpz const & a, mpz const & b, mpz & c); void big_rem(mpz const & a, mpz const & b, mpz & c); int big_compare(mpz const & a, mpz const & b); public: unsigned size_info(mpz const & a); struct sz_lt; static bool precise() { return true; } static bool field() { return false; } typedef mpz numeral; mpz_manager(); ~mpz_manager(); static bool is_small(mpz const & a) { return a.m_kind == mpz_small; } static mpz mk_z(int val) { return mpz(val); } void del(mpz & a); void add(mpz const & a, mpz const & b, mpz & c); void sub(mpz const & a, mpz const & b, mpz & c); void inc(mpz & a) { add(a, mpz(1), a); } void dec(mpz & a) { add(a, mpz(-1), a); } void mul(mpz const & a, mpz const & b, mpz & c); // d <- a + b*c void addmul(mpz const & a, mpz const & b, mpz const & c, mpz & d); // d <- a - b*c void submul(mpz const & a, mpz const & b, mpz const & c, mpz & d); void machine_div_rem(mpz const & a, mpz const & b, mpz & q, mpz & r); void machine_div(mpz const & a, mpz const & b, mpz & c); void rem(mpz const & a, mpz const & b, mpz & c); void div_gcd(mpz const & a, mpz const & b, mpz & c); void div(mpz const & a, mpz const & b, mpz & c); void mod(mpz const & a, mpz const & b, mpz & c); void neg(mpz & a); void abs(mpz & a); static bool is_pos(mpz const & a) { return sign(a) > 0; } static bool is_neg(mpz const & a) { return sign(a) < 0; } static bool is_zero(mpz const & a) { return sign(a) == 0; } static int sign(mpz const & a) { #ifndef _MP_GMP return a.m_val; #else if (is_small(a)) return a.m_val; else return mpz_sgn(*a.m_ptr); #endif } static bool is_nonpos(mpz const & a) { return !is_pos(a); } static bool is_nonneg(mpz const & a) { return !is_neg(a); } bool eq(mpz const & a, mpz const & b) { if (is_small(a) && is_small(b)) { return a.m_val == b.m_val; } else { return big_compare(a, b) == 0; } } bool lt(mpz const& a, int b) { if (is_small(a)) { return a.m_val < b; } else { return lt(a, mpz(b)); } } bool lt(mpz const & a, mpz const & b) { if (is_small(a) && is_small(b)) { return a.m_val < b.m_val; } else { return big_compare(a, b) < 0; } } bool neq(mpz const & a, mpz const & b) { return !eq(a, b); } bool gt(mpz const & a, mpz const & b) { return lt(b, a); } bool ge(mpz const & a, mpz const & b) { return !lt(a, b); } bool le(mpz const & a, mpz const & b) { return !lt(b, a); } void gcd(mpz const & a, mpz const & b, mpz & c); void gcd(unsigned sz, mpz const * as, mpz & g); /** \brief Extended Euclid: r1*a + r2*b = g */ void gcd(mpz const & r1, mpz const & r2, mpz & a, mpz & b, mpz & g); void lcm(mpz const & a, mpz const & b, mpz & c); /** \brief Return true if a | b */ bool divides(mpz const & a, mpz const & b); // not a field void inv(mpz & a) { SASSERT(false); } void bitwise_or(mpz const & a, mpz const & b, mpz & c); void bitwise_and(mpz const & a, mpz const & b, mpz & c); void bitwise_xor(mpz const & a, mpz const & b, mpz & c); void bitwise_not(unsigned sz, mpz const & a, mpz & c); void set(mpz & target, mpz const & source) { if (is_small(source)) { target.m_val = source.m_val; target.m_kind = mpz_small; } else { big_set(target, source); } } void set(mpz & target, mpz && source) { target.m_val = source.m_val; std::swap(target.m_ptr, source.m_ptr); auto o = target.m_owner; target.m_owner = source.m_owner; source.m_owner = o; auto k = target.m_kind; target.m_kind = source.m_kind; source.m_kind = k; } void set(mpz & a, int val) { a.m_val = val; a.m_kind = mpz_small; } void set(mpz & a, unsigned val) { if (val <= INT_MAX) set(a, static_cast(val)); else set(a, static_cast(static_cast(val))); } void set(mpz & a, char const * val); void set(mpz & a, int64_t val) { set_i64(a, val); } void set(mpz & a, uint64_t val) { if (val < INT_MAX) { a.m_val = static_cast(val); a.m_kind = mpz_small; } else { set_big_ui64(a, val); } } void set_digits(mpz & target, unsigned sz, digit_t const * digits); mpz dup(const mpz & source) { mpz temp; set(temp, source); return temp; } // deallocates any memory. void reset(mpz & a); void swap(mpz & a, mpz & b) { std::swap(a.m_val, b.m_val); std::swap(a.m_ptr, b.m_ptr); auto o = a.m_owner; a.m_owner = b.m_owner; b.m_owner = o; auto k = a.m_kind; a.m_kind = b.m_kind; b.m_kind = k; } bool is_uint64(mpz const & a) const; bool is_int64(mpz const & a) const; uint64_t get_uint64(mpz const & a) const; int64_t get_int64(mpz const & a) const; bool is_uint(mpz const & a) const { return is_uint64(a) && get_uint64(a) < UINT_MAX; } unsigned get_uint(mpz const & a) const { SASSERT(is_uint(a)); return static_cast(get_uint64(a)); } bool is_int(mpz const & a) const { return is_int64(a) && INT_MIN < get_int64(a) && get_int64(a) < INT_MAX; } int get_int(mpz const & a) const { SASSERT(is_int(a)); return static_cast(get_int64(a)); } double get_double(mpz const & a) const; std::string to_string(mpz const & a) const; void display(std::ostream & out, mpz const & a) const; /** \brief Display mpz number in SMT 2.0 format. If decimal == true, then ".0" is appended. */ void display_smt2(std::ostream & out, mpz const & a, bool decimal) const; static unsigned hash(mpz const & a); static bool is_one(mpz const & a) { #ifndef _MP_GMP return is_small(a) && a.m_val == 1; #else if (is_small(a)) return a.m_val == 1; return mpz_cmp_si(*a.m_ptr, 1) == 0; #endif } static bool is_minus_one(mpz const & a) { #ifndef _MP_GMP return is_small(a) && a.m_val == -1; #else if (is_small(a)) return a.m_val == -1; return mpz_cmp_si(*a.m_ptr, -1) == 0; #endif } void power(mpz const & a, unsigned p, mpz & b); bool is_power_of_two(mpz const & a); bool is_power_of_two(mpz const & a, unsigned & shift); void machine_div2k(mpz & a, unsigned k); void machine_div2k(mpz const & a, unsigned k, mpz & r) { set(r, a); machine_div2k(r, k); } void mul2k(mpz & a, unsigned k); void mul2k(mpz const & a, unsigned k, mpz & r) { set(r, a); mul2k(r, k); } /** \brief Return largest k s.t. n is a multiple of 2^k */ unsigned power_of_two_multiple(mpz const & n); /** \brief Return the position of the most significant bit. Return 0 if the number is negative */ unsigned log2(mpz const & n); /** \brief log2(-n) Return 0 if the number is nonegative */ unsigned mlog2(mpz const & n); /** \brief Return the bit-size of n. This method is mainly used for collecting statistics. */ unsigned bitsize(mpz const & n); /** \brief Return true if the number is a perfect square, and store the square root in 'root'. If the number n is positive and the result is false, then root will contain the smallest integer r such that r*r > n. */ bool is_perfect_square(mpz const & a, mpz & root); /** \brief Return the biggest k s.t. 2^k <= a. \remark Return 0 if a is not positive. */ unsigned prev_power_of_two(mpz const & a) { return log2(a); } /** \brief Return true if a^{1/n} is an integer, and store the result in a. Otherwise return false, and update a with the smallest integer r such that r*r > n. \remark This method assumes that if n is even, then a is nonegative */ bool root(mpz & a, unsigned n); bool root(mpz const & a, unsigned n, mpz & r) { set(r, a); return root(r, n); } bool is_even(mpz const & a) { if (is_small(a)) return !(a.m_val & 0x1); #ifndef _MP_GMP return !(0x1 & digits(a)[0]); #else return mpz_even_p(*a.m_ptr); #endif } bool is_odd(mpz const & n) { return !is_even(n); } // Store the digits of n into digits, and return the sign. bool decompose(mpz const & n, svector & digits); }; #ifndef _NO_OMP_ typedef mpz_manager synch_mpz_manager; #else typedef mpz_manager synch_mpz_manager; #endif typedef mpz_manager unsynch_mpz_manager; typedef _scoped_numeral scoped_mpz; typedef _scoped_numeral scoped_synch_mpz; typedef _scoped_numeral_vector scoped_mpz_vector; #endif /* MPZ_H_ */