/*++ Copyright (c) 2006 Microsoft Corporation Module Name: theory_array_full.cpp Abstract: Author: Nikolaj Bjorner 2008-22-10 Revision History: --*/ #include "smt_context.h" #include "theory_array_full.h" #include "ast_ll_pp.h" #include "ast_pp.h" #include "ast_smt2_pp.h" #include "stats.h" namespace smt { theory_array_full::theory_array_full(ast_manager & m, theory_array_params & params) : theory_array(m, params), m_sort2epsilon(m) {} theory_array_full::~theory_array_full() { std::for_each(m_var_data_full.begin(), m_var_data_full.end(), delete_proc()); m_var_data_full.reset(); } void theory_array_full::add_map(theory_var v, enode* s) { if (m_params.m_array_cg && !s->is_cgr()) { return; } SASSERT(is_map(s)); v = find(v); var_data_full * d_full = m_var_data_full[v]; var_data * d = m_var_data[v]; // // TODO: defaulting to exhaustive up-propagation. // instead apply stratified filter. set_prop_upward(v,d); d_full->m_maps.push_back(s); m_trail_stack.push(push_back_trail(d_full->m_maps)); ptr_vector::iterator it = d->m_parent_selects.begin(); ptr_vector::iterator end = d->m_parent_selects.end(); for (; it != end; ++it) { SASSERT(is_select(*it)); instantiate_select_map_axiom(*it, s); } set_prop_upward(s); } bool theory_array_full::instantiate_axiom_map_for(theory_var v) { bool result = false; var_data * d = m_var_data[v]; var_data_full * d_full = m_var_data_full[v]; unsigned num_maps = d_full->m_parent_maps.size(); unsigned num_selects = d->m_parent_selects.size(); for (unsigned i = 0; i < num_maps; ++i) { for (unsigned j = 0; j < num_selects; ++j) { if (instantiate_select_map_axiom(d->m_parent_selects[j], d_full->m_parent_maps[i])) { result = true; } } } return result; } void theory_array_full::add_parent_map(theory_var v, enode* s) { if (m_params.m_array_cg && !s->is_cgr()) { return; } SASSERT(v != null_theory_var); SASSERT(is_map(s)); v = find(v); var_data * d = m_var_data[v]; var_data_full * d_full = m_var_data_full[v]; d_full->m_parent_maps.push_back(s); m_trail_stack.push(push_back_trail(d_full->m_parent_maps)); if (!m_params.m_array_weak && !m_params.m_array_delay_exp_axiom && d->m_prop_upward) { ptr_vector::iterator it = d->m_parent_selects.begin(); ptr_vector::iterator end = d->m_parent_selects.end(); for (; it != end; ++it) { if (!m_params.m_array_cg || (*it)->is_cgr()) { instantiate_select_map_axiom(*it, s); } } } } // // set set_prop_upward on root and recursively on children if necessary. // void theory_array_full::set_prop_upward(theory_var v) { if (m_params.m_array_weak) return; v = find(v); var_data * d = m_var_data[v]; if (!d->m_prop_upward) { m_trail_stack.push(reset_flag_trail(d->m_prop_upward)); d->m_prop_upward = true; TRACE("array", tout << "#" << v << "\n";); if (!m_params.m_array_delay_exp_axiom) { instantiate_axiom2b_for(v); instantiate_axiom_map_for(v); } var_data_full * d2 = m_var_data_full[v]; ptr_vector::iterator it = d->m_stores.begin(); ptr_vector::iterator end = d->m_stores.end(); for (; it != end; ++it) { set_prop_upward(*it); } it = d2->m_maps.begin(); end = d2->m_maps.end(); for (; it != end; ++it) { set_prop_upward(*it); } it = d2->m_consts.begin(); end = d2->m_consts.end(); for (; it != end; ++it) { set_prop_upward(*it); } } } // // call set_prop_upward on array arguments. // void theory_array_full::set_prop_upward(enode * n) { TRACE("array", tout << mk_pp(n->get_owner(), get_manager()) << "\n";); if (is_store(n)) { set_prop_upward(n->get_arg(0)->get_th_var(get_id())); } else if (is_map(n)) { for (unsigned i = 0; i < n->get_num_args(); ++i) { set_prop_upward(n->get_arg(i)->get_th_var(get_id())); } } } void theory_array_full::set_prop_upward(theory_var v, var_data* d) { if (m_params.m_array_always_prop_upward || d->m_stores.size() >= 1) { theory_array::set_prop_upward(v, d); } else { var_data_full * d2 = m_var_data_full[v]; unsigned sz = d2->m_maps.size(); for(unsigned i = 0; i < sz; ++i) { set_prop_upward(d2->m_maps[i]); } } } unsigned theory_array_full::get_lambda_equiv_size(theory_var v, var_data* d) { var_data_full * d2 = m_var_data_full[v]; return d->m_stores.size() + 2*d2->m_consts.size() + 2*d2->m_maps.size(); } void theory_array_full::add_const(theory_var v, enode* cnst) { var_data * d = m_var_data[v]; unsigned lambda_equiv_class_size = get_lambda_equiv_size(v, d); if (m_params.m_array_always_prop_upward || lambda_equiv_class_size >= 1) { set_prop_upward(v, d); } ptr_vector & consts = m_var_data_full[v]->m_consts; m_trail_stack.push(push_back_trail(consts)); consts.push_back(cnst); instantiate_default_const_axiom(cnst); ptr_vector::iterator it = d->m_parent_selects.begin(); ptr_vector::iterator end = d->m_parent_selects.end(); for (; it != end; ++it) { SASSERT(is_select(*it)); instantiate_select_const_axiom(*it, cnst); } } void theory_array_full::add_as_array(theory_var v, enode* arr) { var_data * d = m_var_data[v]; unsigned lambda_equiv_class_size = get_lambda_equiv_size(v, d); if (m_params.m_array_always_prop_upward || lambda_equiv_class_size >= 1) { set_prop_upward(v, d); } ptr_vector & as_arrays = m_var_data_full[v]->m_as_arrays; m_trail_stack.push(push_back_trail(as_arrays)); as_arrays.push_back(arr); instantiate_default_as_array_axiom(arr); ptr_vector::iterator it = d->m_parent_selects.begin(); ptr_vector::iterator end = d->m_parent_selects.end(); for (; it != end; ++it) { SASSERT(is_select(*it)); instantiate_select_as_array_axiom(*it, arr); } } void theory_array_full::reset_eh() { theory_array::reset_eh(); std::for_each(m_var_data_full.begin(), m_var_data_full.end(), delete_proc()); m_var_data_full.reset(); } void theory_array_full::display_var(std::ostream & out, theory_var v) const { theory_array::display_var(out, v); var_data_full const * d = m_var_data_full[v]; out << " maps: {"; display_ids(out, d->m_maps.size(), d->m_maps.c_ptr()); out << "} p_parent_maps: {"; display_ids(out, d->m_parent_maps.size(), d->m_parent_maps.c_ptr()); out << "} p_const: {"; display_ids(out, d->m_consts.size(), d->m_consts.c_ptr()); out << "}\n"; } theory_var theory_array_full::mk_var(enode * n) { theory_var r = theory_array::mk_var(n); SASSERT(r == static_cast(m_var_data_full.size())); m_var_data_full.push_back(alloc(var_data_full)); var_data_full * d = m_var_data_full.back(); if (is_map(n)) { instantiate_default_map_axiom(n); d->m_maps.push_back(n); } else if (is_const(n)) { instantiate_default_const_axiom(n); d->m_consts.push_back(n); } else if (is_default(n)) { // no-op } else if (is_as_array(n)) { instantiate_default_as_array_axiom(n); d->m_as_arrays.push_back(n); } return r; } bool theory_array_full::internalize_atom(app * atom, bool) { return internalize_term(atom); } bool theory_array_full::internalize_term(app * n) { TRACE("array", tout << mk_pp(n, get_manager()) << "\n";); if (is_store(n) || is_select(n)) { return theory_array::internalize_term(n); } if (!is_const(n) && !is_default(n) && !is_map(n) && !is_as_array(n)) { if (!is_array_ext(n)) found_unsupported_op(n); return false; } if (!internalize_term_core(n)) { return true; } context & ctx = get_context(); if (is_map(n)) { for (unsigned i = 0; i < n->get_num_args(); ++i) { enode* arg = ctx.get_enode(n->get_arg(i)); if (!is_attached_to_var(arg)) { mk_var(arg); } } } else if (is_default(n)) { enode* arg0 = ctx.get_enode(n->get_arg(0)); if (!is_attached_to_var(arg0)) { mk_var(arg0); } } enode* node = ctx.get_enode(n); if (!is_attached_to_var(node)) { mk_var(node); } if (is_default(n)) { enode* arg0 = ctx.get_enode(n->get_arg(0)); theory_var v_arg = arg0->get_th_var(get_id()); add_parent_default(v_arg); } else if (is_map(n)) { for (unsigned i = 0; i < n->get_num_args(); ++i) { enode* arg = ctx.get_enode(n->get_arg(i)); theory_var v_arg = arg->get_th_var(get_id()); add_parent_map(v_arg, node); } instantiate_default_map_axiom(node); } else if (is_const(n)) { instantiate_default_const_axiom(node); } else if (is_as_array(n)) { // The array theory is not a decision procedure // for as-array. // Ex: (as-array f) = (as-array g) & f(0) = 0 & g(0) = 1 // There is nothing to propagate the disequality. // Even if there was, as-array on interpreted // functions will be incomplete. // The instantiation operations are still sound to include. found_unsupported_op(n); instantiate_default_as_array_axiom(node); } return true; } void theory_array_full::merge_eh(theory_var v1, theory_var v2, theory_var u, theory_var w) { theory_array::merge_eh(v1, v2, u, w); // v1 is the new root SASSERT(v1 == find(v1)); var_data_full * d2 = m_var_data_full[v2]; ptr_vector::iterator it, end; it = d2->m_maps.begin(); end = d2->m_maps.end(); for (; it != end; ++it) { add_map(v1, *it); } it = d2->m_parent_maps.begin(); end = d2->m_parent_maps.end(); for (; it != end; ++it) { add_parent_map(v1, *it); } it = d2->m_consts.begin(); end = d2->m_consts.end(); for (; it != end; ++it) { add_const(v1, *it); } it = d2->m_as_arrays.begin(); end = d2->m_as_arrays.end(); for (; it != end; ++it) { add_as_array(v1, *it); } TRACE("array", tout << mk_pp(get_enode(v1)->get_owner(), get_manager()) << "\n"; tout << mk_pp(get_enode(v2)->get_owner(), get_manager()) << "\n"; tout << "merge in\n"; display_var(tout, v2); tout << "after merge\n"; display_var(tout, v1);); } void theory_array_full::add_parent_default(theory_var v) { SASSERT(v != null_theory_var); v = find(v); var_data* d = m_var_data[v]; ptr_vector::iterator it, end; it = d->m_stores.begin(); end = d->m_stores.end(); for(; it != end; ++it) { enode * store = *it; SASSERT(is_store(store)); instantiate_default_store_axiom(store); } if (!m_params.m_array_weak && !m_params.m_array_delay_exp_axiom && d->m_prop_upward) { it = d->m_parent_stores.begin(); end = d->m_parent_stores.end(); for (; it != end; ++it) { enode* store = *it; SASSERT(is_store(store)); if (!m_params.m_array_cg || store->is_cgr()) { instantiate_default_store_axiom(store); } } } } void theory_array_full::add_parent_select(theory_var v, enode * s) { TRACE("array", tout << v << " select parent: " << mk_pp(s->get_owner(), get_manager()) << "\n"; display_var(tout, v); ); theory_array::add_parent_select(v,s); v = find(v); var_data_full* d_full = m_var_data_full[v]; var_data* d = m_var_data[v]; ptr_vector::iterator it = d_full->m_consts.begin(); ptr_vector::iterator end = d_full->m_consts.end(); for (; it != end; ++it) { instantiate_select_const_axiom(s, *it); } it = d_full->m_maps.begin(); end = d_full->m_maps.end(); for (; it != end; ++it) { enode* map = *it; SASSERT(is_map(map)); instantiate_select_map_axiom(s, map); } if (!m_params.m_array_weak && !m_params.m_array_delay_exp_axiom && d->m_prop_upward) { it = d_full->m_parent_maps.begin(); end = d_full->m_parent_maps.end(); for (; it != end; ++it) { enode* map = *it; SASSERT(is_map(map)); if (!m_params.m_array_cg || map->is_cgr()) { instantiate_select_map_axiom(s, map); } } } } void theory_array_full::relevant_eh(app* n) { TRACE("array", tout << mk_pp(n, get_manager()) << "\n";); theory_array::relevant_eh(n); if (!is_default(n) && !is_select(n) && !is_map(n) && !is_const(n) && !is_as_array(n)) { return; } context & ctx = get_context(); enode* node = ctx.get_enode(n); if (is_select(n)) { enode * arg = ctx.get_enode(n->get_arg(0)); theory_var v = arg->get_th_var(get_id()); SASSERT(v != null_theory_var); add_parent_select(find(v), node); } else if (is_default(n)) { enode * arg = ctx.get_enode(n->get_arg(0)); theory_var v = arg->get_th_var(get_id()); SASSERT(v != null_theory_var); add_parent_default(find(v)); } else if (is_const(n)) { instantiate_default_const_axiom(node); } else if (is_map(n)) { for (unsigned i = 0; i < n->get_num_args(); ++i) { enode* arg = ctx.get_enode(n->get_arg(i)); theory_var v_arg = find(arg->get_th_var(get_id())); add_parent_map(v_arg, node); set_prop_upward(v_arg); } instantiate_default_map_axiom(node); } else if (is_as_array(n)) { instantiate_default_as_array_axiom(node); } } // // Assert axiom: // select(map[f](a, ... d), i) = f(select(a,i),...,select(d,i)) // bool theory_array_full::instantiate_select_map_axiom(enode* sl, enode* mp) { app* map = mp->get_owner(); app* select = sl->get_owner(); SASSERT(is_map(map)); SASSERT(is_select(select)); SASSERT(map->get_num_args() > 0); func_decl* f = to_func_decl(map->get_decl()->get_parameter(0).get_ast()); context& ctx = get_context(); ast_manager& m = get_manager(); TRACE("array_map_bug", tout << "invoked instantiate_select_map_axiom\n"; tout << sl->get_owner_id() << " " << mp->get_owner_id() << "\n"; tout << mk_ismt2_pp(sl->get_owner(), m) << "\n" << mk_ismt2_pp(mp->get_owner(), m) << "\n";); if (!ctx.add_fingerprint(mp, mp->get_owner_id(), sl->get_num_args() - 1, sl->get_args() + 1)) { return false; } TRACE("array_map_bug", tout << "new axiom\n";); m_stats.m_num_map_axiom++; TRACE("array", tout << mk_bounded_pp(mp->get_owner(), get_manager()) << "\n"; tout << mk_bounded_pp(sl->get_owner(), get_manager()) << "\n";); unsigned num_args = select->get_num_args(); unsigned num_arrays = map->get_num_args(); ptr_buffer args1, args2; vector > args2l; args1.push_back(map); for (unsigned j = 0; j < num_arrays; ++j) { ptr_vector arg; arg.push_back(map->get_arg(j)); args2l.push_back(arg); } for (unsigned i = 1; i < num_args; ++i) { expr* arg = select->get_arg(i); for (unsigned j = 0; j < num_arrays; ++j) { args2l[j].push_back(arg); } args1.push_back(arg); } for (unsigned j = 0; j < num_arrays; ++j) { expr* sel = mk_select(args2l[j].size(), args2l[j].c_ptr()); args2.push_back(sel); } expr_ref sel1(m), sel2(m); sel1 = mk_select(args1.size(), args1.c_ptr()); m_simp->mk_app(f, args2.size(), args2.c_ptr(), sel2); ctx.internalize(sel1, false); ctx.internalize(sel2, false); TRACE("array_map_bug", tout << "select-map axiom\n" << mk_ismt2_pp(sel1, m) << "\n=\n" << mk_ismt2_pp(sel2,m) << "\n";); return try_assign_eq(sel1, sel2); } // // // Assert axiom: // default(map[f](a,..,d)) = f(default(a),..,default(d)) // bool theory_array_full::instantiate_default_map_axiom(enode* mp) { SASSERT(is_map(mp)); app* map = mp->get_owner(); context& ctx = get_context(); if (!ctx.add_fingerprint(this, 0, 1, &mp)) { return false; } TRACE("array", tout << mk_bounded_pp(map, get_manager()) << "\n";); m_stats.m_num_default_map_axiom++; func_decl* f = to_func_decl(map->get_decl()->get_parameter(0).get_ast()); SASSERT(map->get_num_args() == f->get_arity()); ptr_buffer args2; for (unsigned i = 0; i < map->get_num_args(); ++i) { args2.push_back(mk_default(map->get_arg(i))); } expr* def1 = mk_default(map); expr_ref def2(get_manager()); m_simp->mk_app(f, args2.size(), args2.c_ptr(), def2); ctx.internalize(def1, false); ctx.internalize(def2, false); return try_assign_eq(def1, def2); } bool theory_array_full::instantiate_default_const_axiom(enode* cnst) { context& ctx = get_context(); if (!ctx.add_fingerprint(this, 0, 1, &cnst)) { return false; } m_stats.m_num_default_const_axiom++; SASSERT(is_const(cnst)); TRACE("array", tout << mk_bounded_pp(cnst->get_owner(), get_manager()) << "\n";); expr* val = cnst->get_arg(0)->get_owner(); expr* def = mk_default(cnst->get_owner()); ctx.internalize(def, false); return try_assign_eq(val, def); } bool theory_array_full::instantiate_default_as_array_axiom(enode* arr) { context& ctx = get_context(); if (!ctx.add_fingerprint(this, 0, 1, &arr)) { return false; } m_stats.m_num_default_as_array_axiom++; SASSERT(is_as_array(arr)); TRACE("array", tout << mk_bounded_pp(arr->get_owner(), get_manager()) << "\n";); expr* def = mk_default(arr->get_owner()); func_decl * f = array_util(get_manager()).get_as_array_func_decl(arr->get_owner()); ptr_vector args; for (unsigned i = 0; i < f->get_arity(); ++i) { args.push_back(mk_epsilon(f->get_domain(i))); } expr_ref val(get_manager().mk_app(f, args.size(), args.c_ptr()), get_manager()); ctx.internalize(def, false); ctx.internalize(val.get(), false); return try_assign_eq(val.get(), def); } bool theory_array_full::has_large_domain(app* array_term) { SASSERT(is_array_sort(array_term)); sort* s = get_manager().get_sort(array_term); unsigned dim = get_dimension(s); parameter const * params = s->get_info()->get_parameters(); rational sz(1); for (unsigned i = 0; i < dim; ++i) { SASSERT(params[i].is_ast()); sort* d = to_sort(params[i].get_ast()); if (d->is_infinite() || d->is_very_big()) { return true; } sz *= rational(d->get_num_elements().size(),rational::ui64()); if (sz >= rational(1 << 20)) { return true; } } return false; } // // Assert axiom: // select(const v, i_1, ..., i_n) = v // bool theory_array_full::instantiate_select_const_axiom(enode* select, enode* cnst) { SASSERT(is_const(cnst)); SASSERT(is_select(select)); SASSERT(cnst->get_num_args() == 1); context& ctx = get_context(); unsigned num_args = select->get_num_args(); if (!ctx.add_fingerprint(cnst, cnst->get_owner_id(), select->get_num_args() - 1, select->get_args() + 1)) { return false; } m_stats.m_num_select_const_axiom++; ptr_buffer sel_args; sel_args.push_back(cnst->get_owner()); for (unsigned short i = 1; i < num_args; ++i) { sel_args.push_back(select->get_owner()->get_arg(i)); } expr * sel = mk_select(sel_args.size(), sel_args.c_ptr()); expr * val = cnst->get_owner()->get_arg(0); TRACE("array", tout << "new select-const axiom...\n"; tout << "const: " << mk_bounded_pp(cnst->get_owner(), get_manager()) << "\n"; tout << "select: " << mk_bounded_pp(select->get_owner(), get_manager()) << "\n"; tout << " sel/const: " << mk_bounded_pp(sel, get_manager()) << "\n"; tout << "value: " << mk_bounded_pp(val, get_manager()) << "\n"; tout << "#" << sel->get_id() << " = #" << val->get_id() << "\n"; ); ctx.internalize(sel, false); return try_assign_eq(sel,val); } // // Assert axiom: // select(as-array f, i_1, ..., i_n) = (f i_1 ... i_n) // bool theory_array_full::instantiate_select_as_array_axiom(enode* select, enode* arr) { SASSERT(is_as_array(arr->get_owner())); SASSERT(is_select(select)); SASSERT(arr->get_num_args() == 0); context& ctx = get_context(); unsigned num_args = select->get_num_args(); if (!ctx.add_fingerprint(arr, arr->get_owner_id(), select->get_num_args() - 1, select->get_args() + 1)) { return false; } m_stats.m_num_select_as_array_axiom++; ptr_buffer sel_args; sel_args.push_back(arr->get_owner()); for (unsigned short i = 1; i < num_args; ++i) { sel_args.push_back(select->get_owner()->get_arg(i)); } expr * sel = mk_select(sel_args.size(), sel_args.c_ptr()); func_decl * f = array_util(get_manager()).get_as_array_func_decl(arr->get_owner()); expr_ref val(get_manager().mk_app(f, sel_args.size()-1, sel_args.c_ptr()+1), get_manager()); TRACE("array", tout << "new select-as-array axiom...\n"; tout << "as-array: " << mk_bounded_pp(arr->get_owner(), get_manager()) << "\n"; tout << "select: " << mk_bounded_pp(select->get_owner(), get_manager()) << "\n"; tout << " sel/as-array: " << mk_bounded_pp(sel, get_manager()) << "\n"; tout << "value: " << mk_bounded_pp(val.get(), get_manager()) << "\n"; tout << "#" << sel->get_id() << " = #" << val->get_id() << "\n"; ); ctx.internalize(sel, false); ctx.internalize(val.get(), false); return try_assign_eq(sel,val); } bool theory_array_full::instantiate_default_store_axiom(enode* store) { SASSERT(is_store(store)); SASSERT(store->get_num_args() >= 3); app* store_app = store->get_owner(); context& ctx = get_context(); ast_manager& m = get_manager(); if (!ctx.add_fingerprint(this, 0, 1, &store)) { return false; } m_stats.m_num_default_store_axiom++; app* def1; app* def2; TRACE("array", tout << mk_bounded_pp(store_app, m) << "\n";); if (has_large_domain(store_app)) { def2 = mk_default(store_app->get_arg(0)); } else { // // let A = store(B, i, v) // // Add: // default(A) = ite(epsilon = i, v, default(B)) // expr_ref_vector eqs(m); unsigned num_args = store_app->get_num_args(); for (unsigned i = 1; i + 1 < num_args; ++i) { sort* srt = m.get_sort(store_app->get_arg(i)); app* ep = mk_epsilon(srt); eqs.push_back(m.mk_eq(ep, store_app->get_arg(i))); } expr_ref eq(m); simplifier_plugin* p = m_simp->get_plugin(m.get_basic_family_id()); basic_simplifier_plugin* bp = static_cast(p); bp->mk_and(eqs.size(), eqs.c_ptr(), eq); expr* defA = mk_default(store_app->get_arg(0)); def2 = m.mk_ite(eq, store_app->get_arg(num_args-1), defA); #if 0 // // add soft constraints to guide model construction so that // epsilon agrees with the else case in the model construction. // for (unsigned i = 0; i < eqs.size(); ++i) { // assume_diseq(eqs[i]); } #endif } def1 = mk_default(store_app); ctx.internalize(def1, false); ctx.internalize(def2, false); return try_assign_eq(def1, def2); } app* theory_array_full::mk_epsilon(sort* s) { app* eps = 0; if (m_sort2epsilon.find(s, eps)) { return eps; } eps = get_manager().mk_fresh_const("epsilon", s); m_trail_stack.push( ast2ast_trail(m_sort2epsilon, s, eps)); return eps; } final_check_status theory_array_full::assert_delayed_axioms() { final_check_status r = FC_DONE; if (!m_params.m_array_delay_exp_axiom) { r = FC_DONE; } else { r = theory_array::assert_delayed_axioms(); unsigned num_vars = get_num_vars(); for (unsigned v = 0; v < num_vars; v++) { var_data * d = m_var_data[v]; if (d->m_prop_upward && instantiate_axiom_map_for(v)) r = FC_CONTINUE; } } if (r == FC_DONE && m_found_unsupported_op) r = FC_GIVEUP; return r; } bool theory_array_full::try_assign_eq(expr* v1, expr* v2) { context& ctx = get_context(); enode* n1 = ctx.get_enode(v1); enode* n2 = ctx.get_enode(v2); if (n1->get_root() == n2->get_root()) { return false; } TRACE("array", tout << mk_bounded_pp(v1, get_manager()) << "\n==\n" << mk_bounded_pp(v2, get_manager()) << "\n";); #if 0 if (m.proofs_enabled()) { #endif literal eq(mk_eq(v1,v2,true)); ctx.mark_as_relevant(eq); assert_axiom(eq); #if 0 } else { ctx.mark_as_relevant(n1); ctx.mark_as_relevant(n2); ctx.assign_eq(n1, n2, eq_justification::mk_axiom()); } #endif return true; } void theory_array_full::pop_scope_eh(unsigned num_scopes) { unsigned num_old_vars = get_old_num_vars(num_scopes); theory_array::pop_scope_eh(num_scopes); std::for_each(m_var_data_full.begin() + num_old_vars, m_var_data_full.end(), delete_proc()); m_var_data_full.shrink(num_old_vars); } void theory_array_full::collect_statistics(::statistics & st) const { theory_array::collect_statistics(st); st.update("array map ax", m_stats.m_num_map_axiom); st.update("array def const", m_stats.m_num_default_const_axiom); st.update("array sel const", m_stats.m_num_select_const_axiom); st.update("array def store", m_stats.m_num_default_store_axiom); st.update("array def as-array", m_stats.m_num_default_as_array_axiom); st.update("array sel as-array", m_stats.m_num_select_as_array_axiom); } }