/*++ Copyright (c) 2011 Microsoft Corporation Module Name: strategic_solver.h Abstract: Strategies -> Solver Author: Leonardo (leonardo) 2011-05-19 Notes: --*/ #include"strategic_solver.h" #include"cmd_context.h" #include"scoped_timer.h" #include"params2front_end_params.h" #include"ast_smt2_pp.h" // minimum verbosity level for portfolio verbose messages #define PS_VB_LVL 15 strategic_solver::strategic_solver(): m_manager(0), m_fparams(0), m_force_tactic(false), m_inc_mode(false), m_check_sat_executed(false), m_inc_solver(0), m_inc_solver_timeout(UINT_MAX), m_inc_unknown_behavior(IUB_USE_TACTIC_IF_QF), m_default_fct(0), m_curr_tactic(0), m_proof(0), m_callback(0) { m_use_inc_solver_results = false; DEBUG_CODE(m_num_scopes = 0;); m_produce_proofs = false; m_produce_models = false; m_produce_unsat_cores = false; } strategic_solver::~strategic_solver() { SASSERT(!m_curr_tactic); dictionary::iterator it = m_logic2fct.begin(); dictionary::iterator end = m_logic2fct.end(); for (; it != end; ++it) { dealloc(it->m_value); } if (m_proof) m().dec_ref(m_proof); } bool strategic_solver::has_quantifiers() const { unsigned sz = get_num_assertions(); for (unsigned i = 0; i < sz; i++) { if (::has_quantifiers(get_assertion(i))) return true; } return false; } /** \brief Return true if a tactic should be used when the incremental solver returns unknown. */ bool strategic_solver::use_tactic_when_undef() const { switch (m_inc_unknown_behavior) { case IUB_RETURN_UNDEF: return false; case IUB_USE_TACTIC_IF_QF: return !has_quantifiers(); case IUB_USE_TACTIC: return true; default: UNREACHABLE(); return false; } } void strategic_solver::set_inc_solver(solver * s) { SASSERT(m_inc_solver == 0); SASSERT(m_num_scopes == 0); m_inc_solver = s; if (m_callback) m_inc_solver->set_progress_callback(m_callback); } void strategic_solver::updt_params(params_ref const & p) { if (m_inc_solver) m_inc_solver->updt_params(p); if (m_fparams) params2front_end_params(p, *m_fparams); } void strategic_solver::collect_param_descrs(param_descrs & r) { if (m_inc_solver) m_inc_solver->collect_param_descrs(r); } /** \brief Set a timeout for each check_sat query that is processed by the inc_solver. timeout == UINT_MAX means infinite After the timeout a strategy is used. */ void strategic_solver::set_inc_solver_timeout(unsigned timeout) { m_inc_solver_timeout = timeout; } /** \brief Set the default tactic factory. It is used if there is no tactic for a given logic. */ void strategic_solver::set_default_tactic(tactic_factory * fct) { m_default_fct = fct; } /** \brief Set a tactic factory for a given logic. */ void strategic_solver::set_tactic_for(symbol const & logic, tactic_factory * fct) { tactic_factory * old_fct; if (m_logic2fct.find(logic, old_fct)) { dealloc(old_fct); } m_logic2fct.insert(logic, fct); } void strategic_solver::init(ast_manager & m, symbol const & logic) { m_manager = &m; m_logic = logic; if (m_inc_mode) { SASSERT(m_inc_solver); m_inc_solver->init(m, logic); } } // delayed inc solver initialization void strategic_solver::init_inc_solver() { if (m_inc_mode) return; // solver was already initialized if (!m_inc_solver) return; // inc solver was not installed m_inc_mode = true; m_inc_solver->set_front_end_params(*m_fparams); m_inc_solver->init(m(), m_logic); unsigned sz = get_num_assertions(); for (unsigned i = 0; i < sz; i++) { m_inc_solver->assert_expr(get_assertion(i)); } } void strategic_solver::collect_statistics(statistics & st) const { if (m_use_inc_solver_results) { SASSERT(m_inc_solver); m_inc_solver->collect_statistics(st); } else { if (m_curr_tactic) m_curr_tactic->collect_statistics(st); // m_curr_tactic is still being executed. else st.copy(m_stats); } } void strategic_solver::reset() { m_logic = symbol::null; m_inc_mode = false; m_check_sat_executed = false; if (m_inc_solver) m_inc_solver->reset(); SASSERT(!m_curr_tactic); m_use_inc_solver_results = false; reset_results(); } void strategic_solver::reset_results() { m_use_inc_solver_results = false; m_model = 0; if (m_proof) { m().dec_ref(m_proof); m_proof = 0; } m_reason_unknown.clear(); m_stats.reset(); } void strategic_solver::assert_expr(expr * t) { if (m_check_sat_executed && !m_inc_mode) { // a check sat was already executed --> switch to incremental mode init_inc_solver(); SASSERT(m_inc_solver == 0 || m_inc_mode); } if (m_inc_mode) { SASSERT(m_inc_solver); m_inc_solver->assert_expr(t); } } void strategic_solver::push() { DEBUG_CODE(m_num_scopes++;); init_inc_solver(); if (m_inc_solver) m_inc_solver->push(); } void strategic_solver::pop(unsigned n) { DEBUG_CODE({ SASSERT(n <= m_num_scopes); m_num_scopes -= n; }); init_inc_solver(); if (m_inc_solver) m_inc_solver->pop(n); } unsigned strategic_solver::get_scope_level() const { if (m_inc_solver) return m_inc_solver->get_scope_level(); else return 0; } struct aux_timeout_eh : public event_handler { solver * m_solver; volatile bool m_canceled; aux_timeout_eh(solver * s):m_solver(s), m_canceled(false) {} virtual void operator()() { m_solver->cancel(); m_canceled = true; } }; struct strategic_solver::mk_tactic { strategic_solver * m_solver; mk_tactic(strategic_solver * s, tactic_factory * f):m_solver(s) { ast_manager & m = s->m(); params_ref p; front_end_params2params(*s->m_fparams, p); tactic * tct = (*f)(m, p); tct->set_front_end_params(*s->m_fparams); tct->set_logic(s->m_logic); if (s->m_callback) tct->set_progress_callback(s->m_callback); #pragma omp critical (strategic_solver) { s->m_curr_tactic = tct; } } ~mk_tactic() { #pragma omp critical (strategic_solver) { m_solver->m_curr_tactic = 0; } } }; tactic_factory * strategic_solver::get_tactic_factory() const { tactic_factory * f = 0; if (m_logic2fct.find(m_logic, f)) return f; return m_default_fct.get(); } lbool strategic_solver::check_sat_with_assumptions(unsigned num_assumptions, expr * const * assumptions) { if (!m_inc_solver) { IF_VERBOSE(PS_VB_LVL, verbose_stream() << "incremental solver was not installed, returning unknown...\n";); m_use_inc_solver_results = false; m_reason_unknown = "incomplete"; return l_undef; } init_inc_solver(); m_use_inc_solver_results = true; return m_inc_solver->check_sat(num_assumptions, assumptions); } lbool strategic_solver::check_sat(unsigned num_assumptions, expr * const * assumptions) { reset_results(); m_check_sat_executed = true; if (num_assumptions > 0 || // assumptions were provided (!m_fparams->m_auto_config && !m_force_tactic) // auto config and force_tactic are turned off ) { // must use incremental solver return check_sat_with_assumptions(num_assumptions, assumptions); } tactic_factory * factory = get_tactic_factory(); if (factory == 0) init_inc_solver(); // try to switch to incremental solver if (m_inc_mode) { SASSERT(m_inc_solver); unsigned timeout = m_inc_solver_timeout; if (factory == 0) timeout = UINT_MAX; // there is no tactic available if (timeout == UINT_MAX) { IF_VERBOSE(PS_VB_LVL, verbose_stream() << "using incremental solver (without a timeout).\n";); m_use_inc_solver_results = true; lbool r = m_inc_solver->check_sat(0, 0); if (r != l_undef || factory == 0 || !use_tactic_when_undef()) { m_use_inc_solver_results = true; return r; } } else { IF_VERBOSE(PS_VB_LVL, verbose_stream() << "using incremental solver (with timeout).\n";); SASSERT(factory != 0); aux_timeout_eh eh(m_inc_solver.get()); lbool r; { scoped_timer timer(m_inc_solver_timeout, &eh); r = m_inc_solver->check_sat(0, 0); } if ((r != l_undef || !use_tactic_when_undef()) && !eh.m_canceled) { m_use_inc_solver_results = true; return r; } } IF_VERBOSE(PS_VB_LVL, verbose_stream() << "incremental solver failed, trying tactic.\n";); } m_use_inc_solver_results = false; if (factory == 0) { IF_VERBOSE(PS_VB_LVL, verbose_stream() << "there is no tactic available for the current logic.\n";); m_reason_unknown = "incomplete"; return l_undef; } goal_ref g = alloc(goal, m(), m_produce_proofs, m_produce_models, m_produce_unsat_cores); unsigned sz = get_num_assertions(); for (unsigned i = 0; i < sz; i++) { g->assert_expr(get_assertion(i)); } expr_dependency_ref core(m()); mk_tactic tct_maker(this, factory); SASSERT(m_curr_tactic); proof_ref pr(m()); lbool r = ::check_sat(*(m_curr_tactic.get()), g, m_model, pr, core, m_reason_unknown); m_curr_tactic->collect_statistics(m_stats); if (pr) { m_proof = pr; m().inc_ref(m_proof); } return r; } void strategic_solver::set_cancel(bool f) { if (m_inc_solver) m_inc_solver->set_cancel(f); #pragma omp critical (strategic_solver) { if (m_curr_tactic) m_curr_tactic->set_cancel(f); } } void strategic_solver::get_unsat_core(ptr_vector & r) { if (m_use_inc_solver_results) { SASSERT(m_inc_solver); m_inc_solver->get_unsat_core(r); } } void strategic_solver::get_model(model_ref & m) { if (m_use_inc_solver_results) { SASSERT(m_inc_solver); m_inc_solver->get_model(m); } else { m = m_model; } } proof * strategic_solver::get_proof() { if (m_use_inc_solver_results) { SASSERT(m_inc_solver); return m_inc_solver->get_proof(); } else { return m_proof; } } std::string strategic_solver::reason_unknown() const { if (m_use_inc_solver_results) { SASSERT(m_inc_solver); return m_inc_solver->reason_unknown(); } return m_reason_unknown; } void strategic_solver::get_labels(svector & r) { if (m_use_inc_solver_results) { SASSERT(m_inc_solver); m_inc_solver->get_labels(r); } } void strategic_solver::set_progress_callback(progress_callback * callback) { m_callback = callback; if (m_inc_solver) m_inc_solver->set_progress_callback(callback); } void strategic_solver::display(std::ostream & out) const { if (m_manager) { unsigned num = get_num_assertions(); out << "(solver"; for (unsigned i = 0; i < num; i++) { out << "\n " << mk_ismt2_pp(get_assertion(i), m(), 2); } out << ")"; } else { out << "(solver)"; } } strategic_solver_cmd::strategic_solver_cmd(cmd_context & ctx): m_ctx(ctx) { } unsigned strategic_solver_cmd::get_num_assertions() const { return static_cast(m_ctx.end_assertions() - m_ctx.begin_assertions()); } expr * strategic_solver_cmd::get_assertion(unsigned idx) const { SASSERT(idx < get_num_assertions()); return m_ctx.begin_assertions()[idx]; } strategic_solver_api::ctx::ctx(ast_manager & m):m_assertions(m) { } void strategic_solver_api::init(ast_manager & m, symbol const & logic) { strategic_solver::init(m, logic); m_ctx = alloc(ctx, m); } unsigned strategic_solver_api::get_num_assertions() const { if (m_ctx == 0) return 0; return m_ctx->m_assertions.size(); } expr * strategic_solver_api::get_assertion(unsigned idx) const { SASSERT(m_ctx); return m_ctx->m_assertions.get(idx); } void strategic_solver_api::assert_expr(expr * t) { SASSERT(m_ctx); strategic_solver::assert_expr(t); m_ctx->m_assertions.push_back(t); } void strategic_solver_api::push() { SASSERT(m_ctx); strategic_solver::push(); m_ctx->m_scopes.push_back(m_ctx->m_assertions.size()); } void strategic_solver_api::pop(unsigned n) { SASSERT(m_ctx); unsigned new_lvl = m_ctx->m_scopes.size() - n; unsigned old_sz = m_ctx->m_scopes[new_lvl]; m_ctx->m_assertions.shrink(old_sz); m_ctx->m_scopes.shrink(new_lvl); strategic_solver::pop(n); } void strategic_solver_api::reset() { m_ctx = 0; strategic_solver::reset(); }