/*++ Copyright (c) 2006 Microsoft Corporation Module Name: smt_context_pp.cpp Abstract: SMT logical context: pretty printing Author: Leonardo de Moura (leonardo) 2008-02-21. Revision History: --*/ #include"smt_context.h" #include"ast_ll_pp.h" #include"ast_pp.h" #include"ast_smt_pp.h" #include"stats.h" namespace smt { std::ostream& context::display_last_failure(std::ostream& out) const { switch(m_last_search_failure) { case OK: return out << "OK"; case UNKNOWN: return out << "UNKNOWN"; case TIMEOUT: return out << "TIMEOUT"; case MEMOUT: return out << "MEMOUT"; case CANCELED: return out << "CANCELED"; case NUM_CONFLICTS: return out << "NUM_CONFLICTS"; case THEORY: if (!m_incomplete_theories.empty()) { ptr_vector::const_iterator it = m_incomplete_theories.begin(); ptr_vector::const_iterator end = m_incomplete_theories.end(); for (bool first = true; it != end; ++it) { if (first) first = false; else out << " "; out << (*it)->get_name(); } } else { out << "THEORY"; } return out; case QUANTIFIERS: return out << "QUANTIFIERS"; } UNREACHABLE(); return out << "?"; } std::string context::last_failure_as_string() const { std::string r; switch(m_last_search_failure) { case OK: r = "ok"; break; case TIMEOUT: r = "timeout"; break; case MEMOUT: r = "memout"; break; case CANCELED: r = "canceled"; break; case NUM_CONFLICTS: r = "max-conflicts-reached"; break; case THEORY: { r = "(incomplete (theory"; ptr_vector::const_iterator it = m_incomplete_theories.begin(); ptr_vector::const_iterator end = m_incomplete_theories.end(); for (; it != end; ++it) { r += " "; r += (*it)->get_name(); } r += "))"; break; } case QUANTIFIERS: r = "(incomplete quantifiers)"; break; case UNKNOWN: r = "incomplete"; break; } return r; } void context::display_asserted_formulas(std::ostream & out) const { m_asserted_formulas.display_ll(out, get_pp_visited()); } void context::display_literal(std::ostream & out, literal l) const { l.display_compact(out, m_bool_var2expr.c_ptr()); } void context::display_literals(std::ostream & out, unsigned num_lits, literal const * lits) const { display_compact(out, num_lits, lits, m_bool_var2expr.c_ptr()); } void context::display_literals_verbose(std::ostream & out, unsigned num_lits, literal const * lits) const { display_verbose(out, m_manager, num_lits, lits, m_bool_var2expr.c_ptr()); } void context::display_literal_info(std::ostream & out, literal l) const { l.display_compact(out, m_bool_var2expr.c_ptr()); if (l.sign()) out << " (not " << mk_bounded_pp(bool_var2expr(l.var()), m_manager, 10) << ")\n"; else out << " " << mk_bounded_pp(bool_var2expr(l.var()), m_manager, 10) << "\n"; out << "relevant: " << is_relevant(bool_var2expr(l.var())) << ", val: " << get_assignment(l) << "\n"; } void context::display_watch_list(std::ostream & out, literal l) const { display_literal(out, l); out << " watch_list:\n"; watch_list & wl = const_cast(m_watches[l.index()]); watch_list::clause_iterator it = wl.begin_clause(); watch_list::clause_iterator end = wl.end_clause(); for (; it != end; ++it) { display_clause(out, *it); out << "\n"; } } void context::display_watch_lists(std::ostream & out) const { unsigned s = m_watches.size(); for (unsigned l_idx = 0; l_idx < s; l_idx++) { literal l = to_literal(l_idx); display_watch_list(out, l); out << "\n"; } } void context::display_enode_defs(std::ostream & out) const { ptr_vector::const_iterator it = m_enodes.begin(); ptr_vector::const_iterator end = m_enodes.end(); for (; it != end; ++it) { expr * n = (*it)->get_owner(); ast_def_ll_pp(out, m_manager, n, get_pp_visited(), true, false); } } void context::display_bool_var_defs(std::ostream & out) const { unsigned num = get_num_bool_vars(); for (unsigned v = 0; v < num; v++) { expr * n = m_bool_var2expr[v]; ast_def_ll_pp(out, m_manager, n, get_pp_visited(), true, false); } } void context::display_clause_detail(std::ostream & out, clause const * cls) const { out << "lemma: " << cls->is_lemma() << "\n"; unsigned num_lits = cls->get_num_literals(); for (unsigned i = 0; i < num_lits; i++) { literal l = cls->get_literal(i); display_literal(out, l); out << ", val: " << get_assignment(l) << ", lvl: " << get_assign_level(l) << ", ilvl: " << get_intern_level(l.var()) << ", var: " << l.var() << "\n" << mk_pp(bool_var2expr(l.var()), m_manager) << "\n\n"; } } void context::display_clause(std::ostream & out, clause const * cls) const { cls->display_compact(out, m_manager, m_bool_var2expr.c_ptr()); } void context::display_clauses(std::ostream & out, ptr_vector const & v) const { ptr_vector::const_iterator it = v.begin(); ptr_vector::const_iterator end = v.end(); for (; it != end; ++it) { display_clause(out, *it); out << "\n"; } } void context::display_binary_clauses(std::ostream & out) const { bool first = true; vector::const_iterator it = m_watches.begin(); vector::const_iterator end = m_watches.end(); for (unsigned l_idx = 0; it != end; ++it, ++l_idx) { literal l1 = to_literal(l_idx); literal neg_l1 = ~l1; watch_list const & wl = *it; literal const * it2 = wl.begin_literals(); literal const * end2 = wl.end_literals(); for (; it2 != end2; ++it2) { literal l2 = *it2; if (l1.index() < l2.index()) { if (first) { out << "binary clauses:\n"; first = false; } out << "(clause "; display_literal(out, neg_l1); out << " "; display_literal(out, l2); out << ")\n"; } } } } void context::display_assignment(std::ostream & out) const { if (!m_assigned_literals.empty()) { out << "current assignment:\n"; literal_vector::const_iterator it = m_assigned_literals.begin(); literal_vector::const_iterator end = m_assigned_literals.end(); for (; it != end; ++it) { display_literal(out, *it); out << " "; } out << "\n"; } } void context::display_assignment_as_smtlib2(std::ostream& out, char const* logic) const { ast_smt_pp pp(m_manager); pp.set_benchmark_name("lemma"); pp.set_status("unknown"); pp.set_logic(logic); literal_vector::const_iterator it = m_assigned_literals.begin(); literal_vector::const_iterator end = m_assigned_literals.end(); for (; it != end; ++it) { expr_ref n(m_manager); literal2expr(*it, n); pp.add_assumption(n); } pp.display_smt2(out, m_manager.mk_true()); } void context::display_eqc(std::ostream & out) const { bool first = true; ptr_vector::const_iterator it = m_enodes.begin(); ptr_vector::const_iterator end = m_enodes.end(); for (; it != end; ++it) { expr * n = (*it)->get_owner(); expr * r = (*it)->get_root()->get_owner(); if (n != r) { if (first) { out << "equivalence classes:\n"; first = false; } out << "#" << n->get_id() << " -> #" << r->get_id() << "\n"; } } } void context::display_app_enode_map(std::ostream & out) const { if (!m_e_internalized_stack.empty()) { out << "expresion -> enode:\n"; unsigned sz = m_e_internalized_stack.size(); for (unsigned i = 0; i < sz; i++) { expr * n = m_e_internalized_stack.get(i); out << "(#" << n->get_id() << " -> e!" << i << ") "; } out << "\n"; } } void context::display_expr_bool_var_map(std::ostream & out) const { if (!m_b_internalized_stack.empty()) { out << "expresion -> bool_var:\n"; unsigned sz = m_b_internalized_stack.size(); for (unsigned i = 0; i < sz; i++) { expr * n = m_b_internalized_stack.get(i); bool_var v = get_bool_var_of_id(n->get_id()); out << "(#" << n->get_id() << " -> p!" << v << ") "; } out << "\n"; } } void context::display_hot_bool_vars(std::ostream & out) const { out << "hot bool vars:\n"; int num = get_num_bool_vars(); for (bool_var v = 0; v < num; v++) { double val = get_activity(v)/m_bvar_inc; if (val > 10.00) { expr * n = m_b_internalized_stack.get(v); out << "#"; out.width(5); out << std::left; out << n->get_id(); out << " "; out.width(12); out << std::right; out << get_activity(v) << " "; out.width(12); out << val; out << "\n"; } } } void context::display_relevant_exprs(std::ostream & out) const { m_relevancy_propagator->display(out); } void context::display_theories(std::ostream & out) const { ptr_vector::const_iterator it = m_theory_set.begin(); ptr_vector::const_iterator end = m_theory_set.end(); for (; it != end; ++it) { theory * th = *it; th->display(out); } } void context::display(std::ostream & out) const { get_pp_visited().reset(); out << "Logical context:\n"; out << "scope-lvl: " << m_scope_lvl << "\n"; out << "base-lvl: " << m_base_lvl << "\n"; out << "search-lvl: " << m_search_lvl << "\n"; out << "inconsistent(): " << inconsistent() << "\n"; out << "m_asserted_formulas.inconsistent(): " << m_asserted_formulas.inconsistent() << "\n"; display_bool_var_defs(out); display_enode_defs(out); display_asserted_formulas(out); if (!m_aux_clauses.empty()) { out << "auxiliary clauses:\n"; display_clauses(out, m_aux_clauses); } if (!m_lemmas.empty()) { out << "lemmas:\n"; display_clauses(out, m_lemmas); } display_binary_clauses(out); display_assignment(out); display_eqc(out); m_cg_table.display_compact(out); m_case_split_queue->display(out); display_expr_bool_var_map(out); display_app_enode_map(out); display_relevant_exprs(out); display_theories(out); display_decl2enodes(out); display_hot_bool_vars(out); } void context::display_eq_detail(std::ostream & out, enode * n) const { SASSERT(n->is_eq()); out << "#" << n->get_owner_id() << ", root: #" << n->get_root()->get_owner_id() << ", cg: #" << n->m_cg->get_owner_id() << ", val: " << get_assignment(enode2bool_var(n)) << ", lhs: #" << n->get_arg(0)->get_owner_id() << ", rhs: #" << n->get_arg(1)->get_owner_id() << ", lhs->root: #" << n->get_arg(0)->get_root()->get_owner_id() << ", rhs->root: #" << n->get_arg(1)->get_root()->get_owner_id() << ", is_marked: " << n->is_marked() << ", is_relevant: " << is_relevant(n) << ", iscope_lvl: " << n->get_iscope_lvl() << "\n"; } void context::display_parent_eqs(std::ostream & out, enode * n) const { enode_vector::iterator it = n->begin_parents(); enode_vector::iterator end = n->end_parents(); for (; it != end; ++it) { enode * parent = *it; if (parent->is_eq()) display_eq_detail(out, parent); } } void context::display_unsat_core(std::ostream & out) const { unsigned sz = m_unsat_core.size(); for (unsigned i = 0; i < sz; i++) out << mk_pp(m_unsat_core.get(i), m_manager) << "\n"; } void context::collect_statistics(::statistics & st) const { st.update("conflicts", m_stats.m_num_conflicts); st.update("decisions", m_stats.m_num_decisions); st.update("propagations", m_stats.m_num_propagations + m_stats.m_num_bin_propagations); st.update("binary propagations", m_stats.m_num_bin_propagations); st.update("restarts", m_stats.m_num_restarts); st.update("final checks", m_stats.m_num_final_checks); st.update("added eqs", m_stats.m_num_add_eq); st.update("mk clause", m_stats.m_num_mk_clause); st.update("del clause", m_stats.m_num_del_clause); st.update("dyn ack", m_stats.m_num_dyn_ack); st.update("interface eqs", m_stats.m_num_interface_eqs); st.update("max generation", m_stats.m_max_generation); st.update("minimized lits", m_stats.m_num_minimized_lits); st.update("num checks", m_stats.m_num_checks); #if 0 // missing? st.update("sat conflicts", m_stats.m_num_sat_conflicts); st.update("mk bool var", m_stats.m_num_mk_bool_var); st.update("del bool var", m_stats.m_num_del_bool_var); st.update("mk enode", m_stats.m_num_mk_enode); st.update("del enode", m_stats.m_num_del_enode); st.update("mk bin clause", m_stats.m_num_mk_bin_clause); st.update("mk lit", m_stats.m_num_mk_lits); st.update("backwd subs", m_stats.m_num_bs); st.update("backwd subs res", m_stats.m_num_bsr); st.update("frwrd subs res", m_stats.m_num_fsr); #endif m_qmanager->collect_statistics(st); m_asserted_formulas.collect_statistics(st); ptr_vector::const_iterator it = m_theory_set.begin(); ptr_vector::const_iterator end = m_theory_set.end(); for (; it != end; ++it) { (*it)->collect_statistics(st); } } void context::display_statistics(std::ostream & out) const { ::statistics st; collect_statistics(st); st.display(out); } void context::display_istatistics(std::ostream & out) const { ::statistics st; collect_statistics(st); st.display_internal(out); } void context::display_lemma_as_smt_problem(std::ostream & out, unsigned num_antecedents, literal const * antecedents, literal consequent, const char * logic) const { ast_smt_pp pp(m_manager); pp.set_benchmark_name("lemma"); pp.set_status("unsat"); pp.set_logic(logic); for (unsigned i = 0; i < num_antecedents; i++) { literal l = antecedents[i]; expr_ref n(m_manager); literal2expr(l, n); pp.add_assumption(n); } expr_ref n(m_manager); literal2expr(~consequent, n); pp.display(out, n); } static unsigned g_lemma_id = 0; #define BUFFER_SZ 128 void context::display_lemma_as_smt_problem(unsigned num_antecedents, literal const * antecedents, literal consequent, const char * logic) const { char buffer[BUFFER_SZ]; #ifdef _WINDOWS sprintf_s(buffer, BUFFER_SZ, "lemma_%d.smt", g_lemma_id); #else sprintf(buffer, "lemma_%d.smt", g_lemma_id); #endif std::ofstream out(buffer); display_lemma_as_smt_problem(out, num_antecedents, antecedents, consequent, logic); out.close(); g_lemma_id++; } void context::display_lemma_as_smt_problem(std::ostream & out, unsigned num_antecedents, literal const * antecedents, unsigned num_eq_antecedents, enode_pair const * eq_antecedents, literal consequent, const char * logic) const { ast_smt_pp pp(m_manager); pp.set_benchmark_name("lemma"); pp.set_status("unsat"); pp.set_logic(logic); for (unsigned i = 0; i < num_antecedents; i++) { literal l = antecedents[i]; expr_ref n(m_manager); literal2expr(l, n); pp.add_assumption(n); } for (unsigned i = 0; i < num_eq_antecedents; i++) { enode_pair const & p = eq_antecedents[i]; expr_ref eq(m_manager); eq = m_manager.mk_eq(p.first->get_owner(), p.second->get_owner()); pp.add_assumption(eq); } expr_ref n(m_manager); literal2expr(~consequent, n); pp.display(out, n); } void context::display_lemma_as_smt_problem(unsigned num_antecedents, literal const * antecedents, unsigned num_eq_antecedents, enode_pair const * eq_antecedents, literal consequent, const char * logic) const { char buffer[BUFFER_SZ]; #ifdef _WINDOWS sprintf_s(buffer, BUFFER_SZ, "lemma_%d.smt", g_lemma_id); #else sprintf(buffer, "lemma_%d.smt", g_lemma_id); #endif std::ofstream out(buffer); display_lemma_as_smt_problem(out, num_antecedents, antecedents, num_eq_antecedents, eq_antecedents, consequent, logic); out.close(); g_lemma_id++; } /** \brief Display enode definitions #n := (f #i_1 ... #i_n), where #i_k is the root of the k-th argument of the enode #n. */ void context::display_normalized_enodes(std::ostream & out) const { out << "normalized enodes:\n"; ptr_vector::const_iterator it = m_enodes.begin(); ptr_vector::const_iterator end = m_enodes.end(); for (; it != end; ++it) { enode * n = *it; out << "#"; out.width(5); out << std::left << n->get_owner_id() << " #"; out.width(5); out << n->get_root()->get_owner_id() << " := " << std::right; unsigned num = n->get_owner()->get_num_args(); if (num > 0) out << "("; out << n->get_decl()->get_name(); if (!n->get_decl()->private_parameters()) display_parameters(out, n->get_decl()->get_num_parameters(), n->get_decl()->get_parameters()); for (unsigned i = 0; i < num; i++) { expr * arg = n->get_owner()->get_arg(i); if (e_internalized(arg)) { enode * n = get_enode(arg)->get_root(); out << " #" << n->get_owner_id(); } else { out << " #" << arg->get_id(); } } if (num > 0) out << ")"; if (is_relevant(n)) out << "\t*"; out << "\n"; } } void context::display_enodes_lbls(std::ostream & out) const { ptr_vector::const_iterator it = m_enodes.begin(); ptr_vector::const_iterator end = m_enodes.end(); for (; it != end; ++it) { enode * n = *it; n->display_lbls(out); } } void context::display_decl2enodes(std::ostream & out) const { out << "decl2enodes:\n"; vector::const_iterator it1 = m_decl2enodes.begin(); vector::const_iterator end1 = m_decl2enodes.end(); for (unsigned id = 0; it1 != end1; ++it1, ++id) { enode_vector const & v = *it1; if (!v.empty()) { out << "id " << id << " ->"; enode_vector::const_iterator it2 = v.begin(); enode_vector::const_iterator end2 = v.end(); for (; it2 != end2; ++it2) out << " #" << (*it2)->get_owner_id(); out << "\n"; } } } void context::display_subexprs_info(std::ostream & out, expr * n) const { ptr_buffer todo; todo.push_back(n); while (!todo.empty()) { expr * n = todo.back(); todo.pop_back(); out << "#"; out.width(6); out << std::left << n->get_id(); out << ", relevant: " << is_relevant(n); if (m_manager.is_bool(n)) { out << ", val: "; out.width(7); out << std::right; if (lit_internalized(n)) out << get_assignment(n); else out << "l_undef"; } if (e_internalized(n)) { enode * e = get_enode(n); out << ", root: #" << e->get_root()->get_owner_id(); } out << "\n"; if (is_app(n)) { for (unsigned i = 0; i < to_app(n)->get_num_args(); i++) todo.push_back(to_app(n)->get_arg(i)); } } } void context::trace_assign(literal l, b_justification j, bool decision) const { std::ostream & out = *m_fparams.m_trace_stream; out << "[assign] "; display_literal(out, l); if (decision) out << " decision"; out << " "; switch (j.get_kind()) { case b_justification::AXIOM: out << "axiom"; break; case b_justification::BIN_CLAUSE: { literal l2 = j.get_literal(); out << "bin-clause "; display_literal(out, l); out << " "; display_literal(out, l2); break; } case b_justification::CLAUSE: { clause * cls = j.get_clause(); out << "clause "; display_literals(out, cls->get_num_literals(), cls->begin_literals()); break; } case b_justification::JUSTIFICATION: out << "justification"; break; default: UNREACHABLE(); break; } out << "\n"; } };