#include "proof_checker.h" #include "ast_ll_pp.h" #include "ast_pp.h" #include "spc_decl_plugin.h" #include "ast_smt_pp.h" #include "arith_decl_plugin.h" #include "front_end_params.h" #include "th_rewriter.h" #define IS_EQUIV(_e_) (m_manager.is_eq(_e_) || m_manager.is_iff(_e_)) #define SAME_OP(_d1_, _d2_) ((_d1_ == _d2_) || (IS_EQUIV(_d1_) && IS_EQUIV(_d2_))) proof_checker::hyp_decl_plugin::hyp_decl_plugin() : m_cons(0), m_atom(0), m_nil(0), m_cell(0) { } void proof_checker::hyp_decl_plugin::finalize() { m_manager->dec_ref(m_cons); m_manager->dec_ref(m_atom); m_manager->dec_ref(m_nil); m_manager->dec_ref(m_cell); } void proof_checker::hyp_decl_plugin::set_manager(ast_manager* m, family_id id) { decl_plugin::set_manager(m,id); m_cell = m->mk_sort(symbol("cell"), sort_info(id, CELL_SORT)); m_cons = m->mk_func_decl(symbol("cons"), m_cell, m_cell, m_cell, func_decl_info(id, OP_CONS)); m_atom = m->mk_func_decl(symbol("atom"), m->mk_bool_sort(), m_cell, func_decl_info(id, OP_ATOM)); m_nil = m->mk_const_decl(symbol("nil"), m_cell, func_decl_info(id, OP_NIL)); m->inc_ref(m_cell); m->inc_ref(m_cons); m->inc_ref(m_atom); m->inc_ref(m_nil); } sort * proof_checker::hyp_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const* parameters) { SASSERT(k == CELL_SORT); return m_cell; } func_decl * proof_checker::hyp_decl_plugin::mk_func_decl(decl_kind k) { switch(k) { case OP_CONS: return m_cons; case OP_ATOM: return m_atom; case OP_NIL: return m_nil; default: UNREACHABLE(); return 0; } } func_decl * proof_checker::hyp_decl_plugin::mk_func_decl( decl_kind k, unsigned num_parameters, parameter const * parameters, unsigned arity, sort * const * domain, sort * range) { return mk_func_decl(k); } func_decl * proof_checker::hyp_decl_plugin::mk_func_decl( decl_kind k, unsigned num_parameters, parameter const * parameters, unsigned num_args, expr * const * args, sort * range) { return mk_func_decl(k); } void proof_checker::hyp_decl_plugin::get_op_names(svector & op_names, symbol const & logic) { if (logic == symbol::null) { op_names.push_back(builtin_name("cons", OP_CONS)); op_names.push_back(builtin_name("atom", OP_ATOM)); op_names.push_back(builtin_name("nil", OP_NIL)); } } void proof_checker::hyp_decl_plugin::get_sort_names(svector & sort_names, symbol const & logic) { if (logic == symbol::null) { sort_names.push_back(builtin_name("cell", CELL_SORT)); } } proof_checker::proof_checker(ast_manager& m) : m_manager(m), m_todo(m), m_marked(), m_pinned(m), m_nil(m), m_dump_lemmas(false), m_logic("AUFLIA"), m_proof_lemma_id(0) { symbol fam_name("proof_hypothesis"); if (!m.has_plugin(fam_name)) { m.register_plugin(fam_name, alloc(hyp_decl_plugin)); } m_hyp_fid = m.get_family_id(fam_name); m_spc_fid = m.get_family_id("spc"); m_nil = m_manager.mk_const(m_hyp_fid, OP_NIL); } bool proof_checker::check(proof* p, expr_ref_vector& side_conditions) { proof_ref curr(m_manager); m_todo.push_back(p); bool result = true; while (result && !m_todo.empty()) { curr = m_todo.back(); m_todo.pop_back(); result = check1(curr.get(), side_conditions); if (!result) { IF_VERBOSE(0, ast_ll_pp(verbose_stream() << "Proof check failed\n", m_manager, curr.get());); UNREACHABLE(); } } m_hypotheses.reset(); m_pinned.reset(); m_todo.reset(); m_marked.reset(); return result; } bool proof_checker::check1(proof* p, expr_ref_vector& side_conditions) { if (p->get_family_id() == m_manager.get_basic_family_id()) { return check1_basic(p, side_conditions); } if (p->get_family_id() == m_spc_fid) { return check1_spc(p, side_conditions); } return false; } bool proof_checker::check1_spc(proof* p, expr_ref_vector& side_conditions) { decl_kind k = p->get_decl_kind(); bool is_univ = false; expr_ref fact(m_manager), fml(m_manager); expr_ref body(m_manager), fml1(m_manager), fml2(m_manager); sort_ref_vector sorts(m_manager); proof_ref p1(m_manager), p2(m_manager); proof_ref_vector proofs(m_manager); if (match_proof(p, proofs)) { for (unsigned i = 0; i < proofs.size(); ++i) { add_premise(proofs[i].get()); } } switch(k) { case PR_DEMODULATION: { if (match_proof(p, p1) && match_fact(p, fact) && match_fact(p1.get(), fml) && match_quantifier(fml.get(), is_univ, sorts, body) && is_univ) { // TBD: check that fml is an instance of body. return true; } return false; } case PR_SPC_REWRITE: case PR_SUPERPOSITION: case PR_EQUALITY_RESOLUTION: case PR_SPC_RESOLUTION: case PR_FACTORING: case PR_SPC_DER: { if (match_fact(p, fact)) { expr_ref_vector rewrite_eq(m_manager); rewrite_eq.push_back(fact.get()); for (unsigned i = 0; i < proofs.size(); ++i) { if (match_fact(proofs[i].get(), fml)) { rewrite_eq.push_back(m_manager.mk_not(fml.get())); } } expr_ref rewrite_cond(m_manager); rewrite_cond = m_manager.mk_or(rewrite_eq.size(), rewrite_eq.c_ptr()); side_conditions.push_back(rewrite_cond.get()); return true; } return false; } default: UNREACHABLE(); } return false; } bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) { decl_kind k = p->get_decl_kind(); expr_ref fml0(m_manager), fml1(m_manager), fml2(m_manager), fml(m_manager); expr_ref t1(m_manager), t2(m_manager); expr_ref s1(m_manager), s2(m_manager); expr_ref u1(m_manager), u2(m_manager); expr_ref fact(m_manager), body1(m_manager), body2(m_manager); expr_ref l1(m_manager), l2(m_manager), r1(m_manager), r2(m_manager); func_decl_ref d1(m_manager), d2(m_manager), d3(m_manager); proof_ref p0(m_manager), p1(m_manager), p2(m_manager); proof_ref_vector proofs(m_manager); func_decl_ref f1(m_manager), f2(m_manager); expr_ref_vector terms1(m_manager), terms2(m_manager), terms(m_manager); sort_ref_vector decls1(m_manager), decls2(m_manager); if (match_proof(p, proofs)) { for (unsigned i = 0; i < proofs.size(); ++i) { add_premise(proofs.get(i)); } } switch(k) { case PR_UNDEF: return true; case PR_ASSERTED: return true; case PR_GOAL: return true; case PR_MODUS_PONENS: { if (match_fact(p, fact) && match_proof(p, p0, p1) && match_fact(p0.get(), fml0) && match_fact(p1.get(), fml1) && (match_implies(fml1.get(), t1, t2) || match_iff(fml1.get(), t1, t2)) && (fml0.get() == t1.get()) && (fact.get() == t2.get())) { return true; } UNREACHABLE(); return false; } case PR_REFLEXIVITY: { if (match_fact(p, fact) && match_proof(p) && (match_equiv(fact, t1, t2) || match_oeq(fact, t1, t2)) && (t1.get() == t2.get())) { return true; } UNREACHABLE(); return false; } case PR_SYMMETRY: { if (match_fact(p, fact) && match_proof(p, p1) && match_fact(p1.get(), fml) && match_binary(fact.get(), d1, l1, r1) && match_binary(fml.get(), d2, l2, r2) && SAME_OP(d1.get(), d2.get()) && l1.get() == r2.get() && r1.get() == l2.get()) { // TBD d1, d2 is a symmetric predicate return true; } UNREACHABLE(); return false; } case PR_TRANSITIVITY: { if (match_fact(p, fact) && match_proof(p, p1, p2) && match_fact(p1.get(), fml1) && match_fact(p2.get(), fml2) && match_binary(fact.get(), d1, t1, t2) && match_binary(fml1.get(), d2, s1, s2) && match_binary(fml2.get(), d3, u1, u2) && d1.get() == d2.get() && d2.get() == d3.get() && t1.get() == s1.get() && s2.get() == u1.get() && u2.get() == t2.get()) { // TBD d1 is some transitive predicate. return true; } UNREACHABLE(); return false; } case PR_TRANSITIVITY_STAR: { if (match_fact(p, fact) && match_binary(fact.get(), d1, t1, t2)) { u_map vertices; // TBD check that d1 is transitive, symmetric. for (unsigned i = 0; i < proofs.size(); ++i) { if (match_fact(proofs[i].get(), fml) && match_binary(fml.get(), d2, s1, s2) && d1.get() == d2.get()) { unsigned id1 = s1->get_id(); unsigned id2 = s2->get_id(); #define INSERT(_id) if (vertices.contains(_id)) vertices.remove(_id); else vertices.insert(_id, true); INSERT(id1); INSERT(id2); } else { UNREACHABLE(); return false; } } return vertices.size() == 2 && vertices.contains(t1->get_id()) && vertices.contains(t2->get_id()); } UNREACHABLE(); return false; } case PR_MONOTONICITY: { TRACE("proof_checker", tout << mk_bounded_pp(p, m_manager, 3) << "\n";); if (match_fact(p, fact) && match_binary(fact.get(), d1, t1, t2) && match_app(t1.get(), f1, terms1) && match_app(t2.get(), f2, terms2) && f1.get() == f2.get() && terms1.size() == terms2.size()) { // TBD: d1 is monotone. for (unsigned i = 0; i < terms1.size(); ++i) { expr* term1 = terms1[i].get(); expr* term2 = terms2[i].get(); if (term1 != term2) { bool found = false; for(unsigned j = 0; j < proofs.size() && !found; ++j) { found = match_fact(proofs[j].get(), fml) && match_binary(fml.get(), d2, s1, s2) && SAME_OP(d1.get(), d2.get()) && s1.get() == term1 && s2.get() == term2; } if (!found) { UNREACHABLE(); return false; } } } return true; } UNREACHABLE(); return false; } case PR_QUANT_INTRO: { if (match_proof(p, p1) && match_fact(p, fact) && match_fact(p1.get(), fml) && (match_iff(fact.get(), t1, t2) || match_oeq(fact.get(), t1, t2)) && (match_iff(fml.get(), s1, s2) || match_oeq(fml.get(), s1, s2)) && m_manager.is_oeq(fact.get()) == m_manager.is_oeq(fml.get()) && is_quantifier(t1.get()) && is_quantifier(t2.get()) && to_quantifier(t1.get())->get_expr() == s1.get() && to_quantifier(t2.get())->get_expr() == s2.get() && to_quantifier(t1.get())->get_num_decls() == to_quantifier(t2.get())->get_num_decls() && to_quantifier(t1.get())->is_forall() == to_quantifier(t2.get())->is_forall()) { quantifier* q1 = to_quantifier(t1.get()); quantifier* q2 = to_quantifier(t2.get()); for (unsigned i = 0; i < q1->get_num_decls(); ++i) { if (q1->get_decl_sort(i) != q2->get_decl_sort(i)) { // term is not well-typed. UNREACHABLE(); return false; } } return true; } UNREACHABLE(); return false; } case PR_DISTRIBUTIVITY: { if (match_fact(p, fact) && match_proof(p) && match_equiv(fact.get(), t1, t2)) { side_conditions.push_back(fact.get()); return true; } UNREACHABLE(); return false; } case PR_AND_ELIM: { expr_ref_vector terms(m_manager); if (match_proof(p, p1) && match_fact(p, fact) && match_fact(p1.get(), fml) && match_and(fml.get(), terms)) { for (unsigned i = 0; i < terms.size(); ++i) { if (terms[i].get() == fact.get()) { return true; } } } UNREACHABLE(); return false; } case PR_NOT_OR_ELIM: { expr_ref_vector terms(m_manager); if (match_proof(p, p1) && match_fact(p, fact) && match_fact(p1.get(), fml) && match_not(fml.get(), fml1) && match_or(fml1.get(), terms)) { for (unsigned i = 0; i < terms.size(); ++i) { if (match_negated(terms[i].get(), fact.get())) { return true; } } } UNREACHABLE(); return false; } case PR_REWRITE: { if (match_fact(p, fact) && match_proof(p) && match_equiv(fact.get(), t1, t2)) { side_conditions.push_back(fact.get()); return true; } IF_VERBOSE(0, verbose_stream() << "Expected proof of equality:\n" << mk_bounded_pp(p, m_manager);); return false; } case PR_REWRITE_STAR: { if (match_fact(p, fact) && match_equiv(fact.get(), t1, t2)) { expr_ref_vector rewrite_eq(m_manager); rewrite_eq.push_back(fact.get()); for (unsigned i = 0; i < proofs.size(); ++i) { if (match_fact(proofs[i].get(), fml)) { rewrite_eq.push_back(m_manager.mk_not(fml.get())); } } expr_ref rewrite_cond(m_manager); rewrite_cond = m_manager.mk_or(rewrite_eq.size(), rewrite_eq.c_ptr()); side_conditions.push_back(rewrite_cond.get()); return true; } IF_VERBOSE(0, verbose_stream() << "Expected proof of equality:\n" << mk_bounded_pp(p, m_manager);); return false; } case PR_PULL_QUANT: { if (match_proof(p) && match_fact(p, fact) && match_iff(fact.get(), t1, t2) && is_quantifier(t2.get())) { // TBD: check the enchilada. return true; } IF_VERBOSE(0, verbose_stream() << "Expected proof of equivalence with a quantifier:\n" << mk_bounded_pp(p, m_manager);); return false; } case PR_PULL_QUANT_STAR: { if (match_proof(p) && match_fact(p, fact) && match_iff(fact.get(), t1, t2)) { // TBD: check the enchilada. return true; } IF_VERBOSE(0, verbose_stream() << "Expected proof of equivalence:\n" << mk_bounded_pp(p, m_manager);); return false; } case PR_PUSH_QUANT: { if (match_proof(p) && match_fact(p, fact) && match_iff(fact.get(), t1, t2) && is_quantifier(t1.get()) && match_and(to_quantifier(t1.get())->get_expr(), terms1) && match_and(t2.get(), terms2) && terms1.size() == terms2.size()) { quantifier * q1 = to_quantifier(t1.get()); for (unsigned i = 0; i < terms1.size(); ++i) { if (is_quantifier(terms2[i].get()) && to_quantifier(terms2[i].get())->get_expr() == terms1[i].get() && to_quantifier(terms2[i].get())->get_num_decls() == q1->get_num_decls()) { // ok. } else { return false; } } } UNREACHABLE(); return false; } case PR_ELIM_UNUSED_VARS: { if (match_proof(p) && match_fact(p, fact) && match_iff(fact.get(), t1, t2)) { // TBD: // match_quantifier(t1.get(), is_forall1, decls1, body1) // filter out decls1 that occur in body1. // if list is empty, then t2 could be just body1. // otherwise t2 is also a quantifier. return true; } UNREACHABLE(); return false; } case PR_DER: { bool is_forall = false; if (match_proof(p) && match_fact(p, fact) && match_iff(fact.get(), t1, t2) && match_quantifier(t1, is_forall, decls1, body1) && is_forall && match_or(body1.get(), terms1)) { // TBD: check that terms are set of equalities. // t2 is an instance of a predicate in terms1 return true; } UNREACHABLE(); return false; } case PR_HYPOTHESIS: { // TBD all branches with hyptheses must be closed by a later lemma. if (match_proof(p) && match_fact(p, fml)) { return true; } return false; } case PR_LEMMA: { if (match_proof(p, p1) && match_fact(p, fact) && match_fact(p1.get(), fml) && m_manager.is_false(fml.get())) { expr_ref_vector hypotheses(m_manager); expr_ref_vector ors(m_manager); get_hypotheses(p1.get(), hypotheses); if (hypotheses.size() == 1 && match_negated(hypotheses.get(0), fact)) { // Suppose fact is (or a b c) and hypothesis is (not (or a b c)) // That is, (or a b c) should be viewed as a 'quoted expression' and a unary clause, // instead of a clause with three literals. return true; } get_ors(fact.get(), ors); for (unsigned i = 0; i < hypotheses.size(); ++i) { bool found = false; unsigned j; for (j = 0; !found && j < ors.size(); ++j) { found = match_negated(ors[j].get(), hypotheses[i].get()); } if (!found) { TRACE("pr_lemma_bug", tout << "i: " << i << "\n"; tout << "ORs:\n"; for (unsigned i = 0; i < ors.size(); i++) { tout << mk_pp(ors.get(i), m_manager) << "\n"; } tout << "HYPOTHESIS:\n"; for (unsigned i = 0; i < hypotheses.size(); i++) { tout << mk_pp(hypotheses.get(i), m_manager) << "\n"; }); UNREACHABLE(); return false; } TRACE("proof_checker", tout << "Matched:\n"; ast_ll_pp(tout, m_manager, hypotheses[i].get()); ast_ll_pp(tout, m_manager, ors[j-1].get());); } return true; } UNREACHABLE(); return false; } case PR_UNIT_RESOLUTION: { if (match_fact(p, fact) && proofs.size() == 2 && match_fact(proofs[0].get(), fml1) && match_fact(proofs[1].get(), fml2) && match_negated(fml1.get(), fml2.get()) && m_manager.is_false(fact.get())) { return true; } if (match_fact(p, fact) && proofs.size() > 1 && match_fact(proofs.get(0), fml) && match_or(fml.get(), terms1)) { for (unsigned i = 1; i < proofs.size(); ++i) { if (!match_fact(proofs.get(i), fml2)) { return false; } bool found = false; for (unsigned j = 0; !found && j < terms1.size(); ++j) { if (match_negated(terms1.get(j), fml2)) { found = true; if (j + 1 < terms1.size()) { terms1[j] = terms1.get(terms1.size()-1); } terms1.resize(terms1.size()-1); } } if (!found) { TRACE("pr_unit_bug", tout << "Parents:\n"; for (unsigned i = 0; i < proofs.size(); i++) { expr_ref p(m_manager); match_fact(proofs.get(i), p); tout << mk_pp(p, m_manager) << "\n"; } tout << "Fact:\n"; tout << mk_pp(fact, m_manager) << "\n"; tout << "Clause:\n"; tout << mk_pp(fml, m_manager) << "\n"; tout << "Could not find premise " << mk_pp(fml2, m_manager) << "\n"; ); UNREACHABLE(); return false; } } switch(terms1.size()) { case 0: return m_manager.is_false(fact.get()); case 1: return fact.get() == terms1[0].get(); default: { if (match_or(fact.get(), terms2)) { for (unsigned i = 0; i < terms1.size(); ++i) { bool found = false; expr* term1 = terms1[i].get(); for (unsigned j = 0; !found && j < terms2.size(); ++j) { found = term1 == terms2[j].get(); } if (!found) { IF_VERBOSE(0, verbose_stream() << "Premise not found:" << mk_pp(term1, m_manager) << "\n";); return false; } } return true; } IF_VERBOSE(0, verbose_stream() << "Conclusion is not a disjunction:\n"; verbose_stream() << mk_pp(fml.get(), m_manager) << "\n"; verbose_stream() << mk_pp(fact.get(), m_manager) << "\n";); return false; } } } UNREACHABLE(); return false; } case PR_IFF_TRUE: { // iff_true(?rule(?p1, ?fml), (iff ?fml true)) if (match_proof(p, p1) && match_fact(p, fact) && match_fact(p1.get(), fml1) && match_iff(fact.get(), l1, r1) && fml1.get() == l1.get() && r1.get() == m_manager.mk_true()) { return true; } UNREACHABLE(); return false; } case PR_IFF_FALSE: { // iff_false(?rule(?p1, (not ?fml)), (iff ?fml false)) if (match_proof(p, p1) && match_fact(p, fact) && match_fact(p1.get(), fml1) && match_iff(fact.get(), l1, r1) && match_not(fml1.get(), t1) && t1.get() == l1.get() && r1.get() == m_manager.mk_false()) { return true; } UNREACHABLE(); return false; } case PR_COMMUTATIVITY: { // commutativity(= (?c ?t1 ?t2) (?c ?t2 ?t1)) if (match_fact(p, fact) && match_proof(p) && match_equiv(fact.get(), t1, t2) && match_binary(t1.get(), d1, s1, s2) && match_binary(t2.get(), d2, u1, u2) && s1.get() == u2.get() && s2.get() == u1.get() && d1.get() == d2.get() && d1->is_commutative()) { return true; } UNREACHABLE(); return false; } case PR_DEF_AXIOM: { // axiom(?fml) if (match_fact(p, fact) && match_proof(p) && m_manager.is_bool(fact.get())) { return true; } UNREACHABLE(); return false; } case PR_DEF_INTRO: { // def_intro(?fml) // // ?fml: forall x . ~p(x) or e(x) and forall x . ~e(x) or p(x) // : forall x . ~cond(x) or f(x) = then(x) and forall x . cond(x) or f(x) = else(x) // : forall x . f(x) = e(x) // if (match_fact(p, fact) && match_proof(p) && m_manager.is_bool(fact.get())) { return true; } UNREACHABLE(); return false; } case PR_APPLY_DEF: { if (match_fact(p, fact) && match_oeq(fact.get(), t1, t2)) { // TBD: must definitions be in proofs? return true; } UNREACHABLE(); return false; } case PR_IFF_OEQ: { // axiom(?rule(?p1,(iff ?t1 ?t2)), (~ ?t1 ?t2)) if (match_fact(p, fact) && match_proof(p, p1) && match_oeq(fact.get(), t1, t2) && match_fact(p1.get(), fml) && match_iff(fml.get(), s1, s2) && s1.get() == t1.get() && s2.get() == t2.get()) { return true; } UNREACHABLE(); return false; } case PR_NNF_POS: { // TBD: return true; } case PR_NNF_NEG: { // TBD: return true; } case PR_NNF_STAR: { // TBD: return true; } case PR_SKOLEMIZE: { // (exists ?x (p ?x y)) -> (p (sk y) y) // (not (forall ?x (p ?x y))) -> (not (p (sk y) y)) if (match_fact(p, fact) && match_oeq(fact.get(), t1, t2)) { quantifier* q = 0; expr* e = t1.get(); bool is_forall = false; if (match_not(t1.get(), s1)) { e = s1.get(); is_forall = true; } if (is_quantifier(e)) { q = to_quantifier(e); // TBD check that quantifier is properly instantiated return is_forall == q->is_forall(); } } UNREACHABLE(); return false; } case PR_CNF_STAR: { for (unsigned i = 0; i < proofs.size(); ++i) { if (match_op(proofs[i].get(), PR_DEF_INTRO, terms)) { // ok } else { UNREACHABLE(); return false; } } // coarse grain CNF conversion. return true; } case PR_MODUS_PONENS_OEQ: { if (match_fact(p, fact) && match_proof(p, p0, p1) && match_fact(p0.get(), fml0) && match_fact(p1.get(), fml1) && match_oeq(fml1.get(), t1, t2) && fml0.get() == t1.get() && fact.get() == t2.get()) { return true; } UNREACHABLE(); return false; } case PR_TH_LEMMA: { SASSERT(p->get_decl()->get_num_parameters() > 0); SASSERT(p->get_decl()->get_parameter(0).is_symbol()); if (symbol("arith") == p->get_decl()->get_parameter(0).get_symbol()) { return check_arith_proof(p); } dump_proof(p); return true; } case PR_QUANT_INST: { // TODO return true; } default: UNREACHABLE(); return false; } } bool proof_checker::match_fact(proof* p, expr_ref& fact) { if (m_manager.is_proof(p) && m_manager.has_fact(p)) { fact = m_manager.get_fact(p); return true; } return false; } void proof_checker::add_premise(proof* p) { if (!m_marked.is_marked(p)) { m_marked.mark(p, true); m_todo.push_back(p); } } bool proof_checker::match_proof(proof* p) { return m_manager.is_proof(p) && m_manager.get_num_parents(p) == 0; } bool proof_checker::match_proof(proof* p, proof_ref& p0) { if (m_manager.is_proof(p) && m_manager.get_num_parents(p) == 1) { p0 = m_manager.get_parent(p, 0); return true; } return false; } bool proof_checker::match_proof(proof* p, proof_ref& p0, proof_ref& p1) { if (m_manager.is_proof(p) && m_manager.get_num_parents(p) == 2) { p0 = m_manager.get_parent(p, 0); p1 = m_manager.get_parent(p, 1); return true; } return false; } bool proof_checker::match_proof(proof* p, proof_ref_vector& parents) { if (m_manager.is_proof(p)) { for (unsigned i = 0; i < m_manager.get_num_parents(p); ++i) { parents.push_back(m_manager.get_parent(p, i)); } return true; } return false; } bool proof_checker::match_binary(expr* e, func_decl_ref& d, expr_ref& t1, expr_ref& t2) { if (e->get_kind() == AST_APP && to_app(e)->get_num_args() == 2) { d = to_app(e)->get_decl(); t1 = to_app(e)->get_arg(0); t2 = to_app(e)->get_arg(1); return true; } return false; } bool proof_checker::match_app(expr* e, func_decl_ref& d, expr_ref_vector& terms) { if (e->get_kind() == AST_APP) { d = to_app(e)->get_decl(); for (unsigned i = 0; i < to_app(e)->get_num_args(); ++i) { terms.push_back(to_app(e)->get_arg(i)); } return true; } return false; } bool proof_checker::match_quantifier(expr* e, bool& is_univ, sort_ref_vector& sorts, expr_ref& body) { if (is_quantifier(e)) { quantifier* q = to_quantifier(e); is_univ = q->is_forall(); body = q->get_expr(); for (unsigned i = 0; i < q->get_num_decls(); ++i) { sorts.push_back(q->get_decl_sort(i)); } return true; } return false; } bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t1, expr_ref& t2) { if (e->get_kind() == AST_APP && to_app(e)->get_family_id() == m_manager.get_basic_family_id() && to_app(e)->get_decl_kind() == k && to_app(e)->get_num_args() == 2) { t1 = to_app(e)->get_arg(0); t2 = to_app(e)->get_arg(1); return true; } return false; } bool proof_checker::match_op(expr* e, decl_kind k, expr_ref_vector& terms) { if (e->get_kind() == AST_APP && to_app(e)->get_family_id() == m_manager.get_basic_family_id() && to_app(e)->get_decl_kind() == k) { for (unsigned i = 0; i < to_app(e)->get_num_args(); ++i) { terms.push_back(to_app(e)->get_arg(i)); } return true; } return false; } bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t) { if (e->get_kind() == AST_APP && to_app(e)->get_family_id() == m_manager.get_basic_family_id() && to_app(e)->get_decl_kind() == k && to_app(e)->get_num_args() == 1) { t = to_app(e)->get_arg(0); return true; } return false; } bool proof_checker::match_not(expr* e, expr_ref& t) { return match_op(e, OP_NOT, t); } bool proof_checker::match_or(expr* e, expr_ref_vector& terms) { return match_op(e, OP_OR, terms); } bool proof_checker::match_and(expr* e, expr_ref_vector& terms) { return match_op(e, OP_AND, terms); } bool proof_checker::match_iff(expr* e, expr_ref& t1, expr_ref& t2) { return match_op(e, OP_IFF, t1, t2); } bool proof_checker::match_equiv(expr* e, expr_ref& t1, expr_ref& t2) { return match_oeq(e, t1, t2) || match_eq(e, t1, t2); } bool proof_checker::match_implies(expr* e, expr_ref& t1, expr_ref& t2) { return match_op(e, OP_IMPLIES, t1, t2); } bool proof_checker::match_eq(expr* e, expr_ref& t1, expr_ref& t2) { return match_op(e, OP_EQ, t1, t2) || match_iff(e, t1, t2); } bool proof_checker::match_oeq(expr* e, expr_ref& t1, expr_ref& t2) { return match_op(e, OP_OEQ, t1, t2); } bool proof_checker::match_negated(expr* a, expr* b) { expr_ref t(m_manager); return (match_not(a, t) && t.get() == b) || (match_not(b, t) && t.get() == a); } void proof_checker::get_ors(expr* e, expr_ref_vector& ors) { ptr_buffer buffer; if (m_manager.is_or(e)) { app* a = to_app(e); ors.append(a->get_num_args(), a->get_args()); } else { ors.push_back(e); } } void proof_checker::get_hypotheses(proof* p, expr_ref_vector& ante) { ptr_vector stack; expr* h = 0; expr_ref hyp(m_manager); stack.push_back(p); while (!stack.empty()) { p = stack.back(); SASSERT(m_manager.is_proof(p)); if (m_hypotheses.contains(p)) { stack.pop_back(); continue; } if (is_hypothesis(p) && match_fact(p, hyp)) { hyp = mk_atom(hyp.get()); m_pinned.push_back(hyp.get()); m_hypotheses.insert(p, hyp.get()); stack.pop_back(); continue; } // in this system all hypotheses get bound by lemmas. if (m_manager.is_lemma(p)) { m_hypotheses.insert(p, mk_nil()); stack.pop_back(); continue; } bool all_found = true; ptr_vector hyps; for (unsigned i = 0; i < m_manager.get_num_parents(p); ++i) { proof* p_i = m_manager.get_parent(p, i); if (m_hypotheses.find(p_i, h)) { hyps.push_back(h); } else { stack.push_back(p_i); all_found = false; } } if (all_found) { h = mk_hyp(hyps.size(), hyps.c_ptr()); m_pinned.push_back(h); m_hypotheses.insert(p, h); stack.pop_back(); } } // // dis-assemble the set of obtained hypotheses. // if (!m_hypotheses.find(p, h)) { UNREACHABLE(); } ptr_buffer hyps; ptr_buffer todo; expr_mark mark; todo.push_back(h); expr_ref a(m_manager), b(m_manager); while (!todo.empty()) { h = todo.back(); todo.pop_back(); if (mark.is_marked(h)) { continue; } mark.mark(h, true); if (match_cons(h, a, b)) { todo.push_back(a.get()); todo.push_back(b.get()); } else if (match_atom(h, a)) { ante.push_back(a.get()); } else { SASSERT(match_nil(h)); } } TRACE("proof_checker", { ast_ll_pp(tout << "Getting hypotheses from: ", m_manager, p); tout << "Found hypotheses:\n"; for (unsigned i = 0; i < ante.size(); ++i) { ast_ll_pp(tout, m_manager, ante[i].get()); } }); } bool proof_checker::match_nil(expr* e) const { return is_app(e) && to_app(e)->get_family_id() == m_hyp_fid && to_app(e)->get_decl_kind() == OP_NIL; } bool proof_checker::match_cons(expr* e, expr_ref& a, expr_ref& b) const { if (is_app(e) && to_app(e)->get_family_id() == m_hyp_fid && to_app(e)->get_decl_kind() == OP_CONS) { a = to_app(e)->get_arg(0); b = to_app(e)->get_arg(1); return true; } return false; } bool proof_checker::match_atom(expr* e, expr_ref& a) const { if (is_app(e) && to_app(e)->get_family_id() == m_hyp_fid && to_app(e)->get_decl_kind() == OP_ATOM) { a = to_app(e)->get_arg(0); return true; } return false; } expr* proof_checker::mk_atom(expr* e) { return m_manager.mk_app(m_hyp_fid, OP_ATOM, e); } expr* proof_checker::mk_cons(expr* a, expr* b) { return m_manager.mk_app(m_hyp_fid, OP_CONS, a, b); } expr* proof_checker::mk_nil() { return m_nil.get(); } bool proof_checker::is_hypothesis(proof* p) const { return m_manager.is_proof(p) && p->get_decl_kind() == PR_HYPOTHESIS; } expr* proof_checker::mk_hyp(unsigned num_hyps, expr * const * hyps) { expr* result = 0; for (unsigned i = 0; i < num_hyps; ++i) { if (!match_nil(hyps[i])) { if (result) { result = mk_cons(result, hyps[i]); } else { result = hyps[i]; } } } if (result == 0) { return mk_nil(); } else { return result; } } void proof_checker::dump_proof(proof * pr) { if (!m_dump_lemmas) return; SASSERT(m_manager.has_fact(pr)); expr * consequent = m_manager.get_fact(pr); unsigned num = m_manager.get_num_parents(pr); ptr_buffer antecedents; for (unsigned i = 0; i < num; i++) { proof * a = m_manager.get_parent(pr, i); SASSERT(m_manager.has_fact(a)); antecedents.push_back(m_manager.get_fact(a)); } dump_proof(antecedents.size(), antecedents.c_ptr(), consequent); } void proof_checker::dump_proof(unsigned num_antecedents, expr * const * antecedents, expr * consequent) { char buffer[128]; #ifdef _WINDOWS sprintf_s(buffer, ARRAYSIZE(buffer), "proof_lemma_%d.smt", m_proof_lemma_id); #else sprintf(buffer, "proof_lemma_%d.smt", m_proof_lemma_id); #endif std::ofstream out(buffer); ast_smt_pp pp(m_manager); pp.set_benchmark_name("lemma"); pp.set_status("unsat"); pp.set_logic(m_logic.c_str()); for (unsigned i = 0; i < num_antecedents; i++) pp.add_assumption(antecedents[i]); expr_ref n(m_manager); n = m_manager.mk_not(consequent); pp.display(out, n); out.close(); m_proof_lemma_id++; } bool proof_checker::check_arith_literal(bool is_pos, app* lit0, rational const& coeff, expr_ref& sum, bool& is_strict) { ast_manager& m = m_manager; arith_util a(m); app* lit = lit0; if (m.is_not(lit)) { lit = to_app(lit->get_arg(0)); is_pos = !is_pos; } if (!a.is_le(lit) && !a.is_lt(lit) && !a.is_ge(lit) && !a.is_gt(lit) && !m.is_eq(lit)) { std::cout << mk_pp(lit, m) << "\n"; return false; } SASSERT(lit->get_num_args() == 2); sort* s = m.get_sort(lit->get_arg(0)); bool is_int = a.is_int(s); if (!is_int && is_pos && (a.is_gt(lit) || a.is_lt(lit))) { is_strict = true; } if (!is_int && !is_pos && (a.is_ge(lit) || a.is_le(lit))) { is_strict = true; } SASSERT(a.is_int(s) || a.is_real(s)); expr_ref sign1(m), sign2(m), term(m); sign1 = a.mk_numeral(m.is_eq(lit)?coeff:abs(coeff), s); sign2 = a.mk_numeral(m.is_eq(lit)?-coeff:-abs(coeff), s); if (!sum.get()) { sum = a.mk_numeral(rational(0), s); } expr* a0 = lit->get_arg(0); expr* a1 = lit->get_arg(1); if (is_pos && (a.is_ge(lit) || a.is_gt(lit))) { std::swap(a0, a1); } if (!is_pos && (a.is_le(lit) || a.is_lt(lit))) { std::swap(a0, a1); } // // Multiplying by coefficients over strict // and non-strict inequalities: // // (a <= b) * 2 // (a - b <= 0) * 2 // (2a - 2b <= 0) // (a < b) * 2 <=> // (a +1 <= b) * 2 <=> // 2a + 2 <= 2b <=> // 2a+2-2b <= 0 bool strict_ineq = is_pos?(a.is_gt(lit) || a.is_lt(lit)):(a.is_ge(lit) || a.is_le(lit)); if (is_int && strict_ineq) { sum = a.mk_add(sum, sign1); } term = a.mk_mul(sign1, a0); sum = a.mk_add(sum, term); term = a.mk_mul(sign2, a1); sum = a.mk_add(sum, term); #if 1 { th_rewriter rw(m); rw(sum); } std::cout << coeff << "\n" << mk_pp(lit0, m) << "\n" << mk_pp(sum, m) << "\n"; #endif return true; } bool proof_checker::check_arith_proof(proof* p) { func_decl* d = p->get_decl(); SASSERT(PR_TH_LEMMA == p->get_decl_kind()); SASSERT(d->get_parameter(0).get_symbol() == "arith"); ast_manager& m = m_manager; unsigned num_params = d->get_num_parameters(); arith_util autil(m); SASSERT(num_params > 0); if (num_params == 1) { dump_proof(p); return true; } expr_ref fact(m); proof_ref_vector proofs(m_manager); if (!match_fact(p, fact)) { UNREACHABLE(); return false; } if (d->get_parameter(1).get_symbol() != symbol("farkas")) { dump_proof(p); return true; } expr_ref sum(m); bool is_strict = false; unsigned offset = 0; vector coeffs; rational lc(1); for (unsigned i = 2; i < d->get_num_parameters(); ++i) { parameter const& p = d->get_parameter(i); if (!p.is_rational()) { UNREACHABLE(); return false; } coeffs.push_back(p.get_rational()); lc = lcm(lc, denominator(coeffs.back())); } if (!lc.is_one()) { for (unsigned i = 0; i < coeffs.size(); ++i) { coeffs[i] = lc*coeffs[i]; } } unsigned num_parents = m.get_num_parents(p); for (unsigned i = 0; i < num_parents; i++) { proof * a = m.get_parent(p, i); SASSERT(m.has_fact(a)); if (!check_arith_literal(true, to_app(m.get_fact(a)), coeffs[offset++], sum, is_strict)) { return false; } } if (m.is_or(fact)) { app* disj = to_app(fact); unsigned num_args = disj->get_num_args(); for (unsigned i = 0; i < num_args; ++i) { app* lit = to_app(disj->get_arg(i)); if (!check_arith_literal(false, lit, coeffs[offset++], sum, is_strict)) { return false; } } } else if (!m.is_false(fact)) { if (!check_arith_literal(false, to_app(fact), coeffs[offset++], sum, is_strict)) { return false; } } if (!sum.get()) { return false; } sort* s = m.get_sort(sum); if (is_strict) { sum = autil.mk_lt(sum, autil.mk_numeral(rational(0), s)); } else { sum = autil.mk_le(sum, autil.mk_numeral(rational(0), s)); } th_rewriter rw(m); rw(sum); if (!m.is_false(sum)) { std::cout << "Arithmetic proof check failed: " << mk_pp(sum, m) << "\n"; m_dump_lemmas = true; dump_proof(p); return false; } return true; }