/*++ Copyright (c) 2011 Microsoft Corporation Module Name: poly_rewriter.h Abstract: Basic rewriting rules for Polynomials. Author: Leonardo (leonardo) 2011-04-08 Notes: --*/ #ifndef _POLY_REWRITER_H_ #define _POLY_REWRITER_H_ #include"ast.h" #include"obj_hashtable.h" #include"rewriter_types.h" #include"params.h" template class poly_rewriter : public Config { public: static char const * g_ste_blowup_msg; protected: typedef typename Config::numeral numeral; sort * m_curr_sort; obj_map m_expr2pos; bool m_flat; bool m_som; unsigned m_som_blowup; bool m_sort_sums; bool m_hoist_mul; bool m_hoist_cmul; bool is_numeral(expr * n) const { return Config::is_numeral(n); } bool is_numeral(expr * n, numeral & r) const { return Config::is_numeral(n, r); } bool is_zero(expr * n) const { return Config::is_zero(n); } bool is_minus_one(expr * n) const { return Config::is_minus_one(n); } void normalize(numeral & c) { Config::normalize(c, m_curr_sort); } app * mk_numeral(numeral const & r) { return Config::mk_numeral(r, m_curr_sort); } decl_kind add_decl_kind() const { return Config::add_decl_kind(); } decl_kind mul_decl_kind() const { return Config::mul_decl_kind(); } bool use_power() const { return Config::use_power(); } decl_kind power_decl_kind() const { return Config::power_decl_kind(); } bool is_power(expr * t) const { return is_app_of(t, get_fid(), power_decl_kind()); } expr * get_power_body(expr * t, rational & k); struct mon_pw_lt; // functor used to sort monomial elements when use_power() == true expr * mk_mul_app(unsigned num_args, expr * const * args); expr * mk_mul_app(numeral const & c, expr * arg); expr * mk_add_app(unsigned num_args, expr * const * args); br_status mk_flat_mul_core(unsigned num_args, expr * const * args, expr_ref & result); br_status mk_nflat_mul_core(unsigned num_args, expr * const * args, expr_ref & result); expr * get_power_product(expr * t); expr * get_power_product(expr * t, numeral & a); br_status mk_flat_add_core(unsigned num_args, expr * const * args, expr_ref & result); br_status mk_nflat_add_core(unsigned num_args, expr * const * args, expr_ref & result); void set_curr_sort(sort * s) { m_curr_sort = s; } expr * const * get_monomials(expr * & t, unsigned & sz) { if (is_add(t)) { sz = to_app(t)->get_num_args(); return to_app(t)->get_args(); } else { sz = 1; return &t; } } br_status cancel_monomials(expr * lhs, expr * rhs, bool move, expr_ref & lhs_result, expr_ref & rhs_result); bool hoist_multiplication(expr_ref& som); expr* merge_muls(expr* x, expr* y); struct hoist_cmul_lt; bool is_mul(expr * t, numeral & c, expr * & pp); void hoist_cmul(expr_ref_buffer & args); public: poly_rewriter(ast_manager & m, params_ref const & p = params_ref()): Config(m), m_curr_sort(0), m_sort_sums(false) { updt_params(p); SASSERT(!m_som || m_flat); // som of monomials form requires flattening to be enabled. SASSERT(!m_som || !m_hoist_mul); // som is mutually exclusive with hoisting multiplication. updt_params(p); } ast_manager & m() const { return Config::m(); } family_id get_fid() const { return Config::get_fid(); } void updt_params(params_ref const & p); static void get_param_descrs(param_descrs & r); void set_flat(bool f) { m_flat = f; } void set_sort_sums(bool f) { m_sort_sums = f; } bool is_add(expr * n) const { return is_app_of(n, get_fid(), add_decl_kind()); } bool is_mul(expr * n) const { return is_app_of(n, get_fid(), mul_decl_kind()); } bool is_add(func_decl * f) const { return is_decl_of(f, get_fid(), add_decl_kind()); } bool is_mul(func_decl * f) const { return is_decl_of(f, get_fid(), mul_decl_kind()); } br_status mk_mul_core(unsigned num_args, expr * const * args, expr_ref & result) { SASSERT(num_args > 0); if (num_args == 1) { result = args[0]; return BR_DONE; } set_curr_sort(m().get_sort(args[0])); return m_flat ? mk_flat_mul_core(num_args, args, result) : mk_nflat_mul_core(num_args, args, result); } br_status mk_add_core(unsigned num_args, expr * const * args, expr_ref & result) { SASSERT(num_args > 0); if (num_args == 1) { result = args[0]; return BR_DONE; } set_curr_sort(m().get_sort(args[0])); return m_flat ? mk_flat_add_core(num_args, args, result) : mk_nflat_add_core(num_args, args, result); } void mk_add(unsigned num_args, expr * const * args, expr_ref & result) { if (mk_add_core(num_args, args, result) == BR_FAILED) result = mk_add_app(num_args, args); } void mk_add(expr* a1, expr* a2, expr_ref& result) { expr* args[2] = { a1, a2 }; mk_add(2, args, result); } void mk_mul(unsigned num_args, expr * const * args, expr_ref & result) { if (mk_mul_core(num_args, args, result) == BR_FAILED) result = mk_mul_app(num_args, args); } void mk_mul(expr* a1, expr* a2, expr_ref& result) { expr* args[2] = { a1, a2 }; mk_mul(2, args, result); } // The result of the following functions is never BR_FAILED br_status mk_uminus(expr * arg, expr_ref & result); br_status mk_sub(unsigned num_args, expr * const * args, expr_ref & result); void mk_sub(expr* a1, expr* a2, expr_ref& result) { expr* args[2] = { a1, a2 }; mk_sub(2, args, result); } }; #endif