/*++ Copyright (c) 2006 Microsoft Corporation Module Name: macro_manager.cpp Abstract: Author: Leonardo de Moura (leonardo) 2010-04-05. Revision History: Christoph Wintersteiger (t-cwinte), 2010-04-13: Added cycle detection for macro definitions Leonardo de Moura (leonardo) 2010-12-15: Moved dependency management to func_decl_dependencies.h --*/ #include"macro_manager.h" #include"for_each_expr.h" #include"var_subst.h" #include"ast_pp.h" #include"recurse_expr_def.h" macro_manager::macro_manager(ast_manager & m, simplifier & s): m_manager(m), m_simplifier(s), m_util(m, s), m_decls(m), m_macros(m), m_macro_prs(m), m_forbidden(m), m_deps(m) { m_util.set_forbidden_set(&m_forbidden_set); } macro_manager::~macro_manager() { } void macro_manager::push_scope() { m_scopes.push_back(scope()); scope & s = m_scopes.back(); s.m_decls_lim = m_decls.size(); s.m_forbidden_lim = m_forbidden.size(); } void macro_manager::pop_scope(unsigned num_scopes) { unsigned new_lvl = m_scopes.size() - num_scopes; scope & s = m_scopes[new_lvl]; restore_decls(s.m_decls_lim); restore_forbidden(s.m_forbidden_lim); m_scopes.shrink(new_lvl); } void macro_manager::restore_decls(unsigned old_sz) { unsigned sz = m_decls.size(); for (unsigned i = old_sz; i < sz; i++) { m_decl2macro.erase(m_decls.get(i)); m_deps.erase(m_decls.get(i)); if (m_manager.proofs_enabled()) m_decl2macro_pr.erase(m_decls.get(i)); } m_decls.shrink(old_sz); m_macros.shrink(old_sz); if (m_manager.proofs_enabled()) m_macro_prs.shrink(old_sz); } void macro_manager::restore_forbidden(unsigned old_sz) { unsigned sz = m_forbidden.size(); for (unsigned i = old_sz; i < sz; i++) m_forbidden_set.erase(m_forbidden.get(i)); m_forbidden.shrink(old_sz); } void macro_manager::reset() { m_decl2macro.reset(); m_decl2macro_pr.reset(); m_decls.reset(); m_macros.reset(); m_macro_prs.reset(); m_scopes.reset(); m_forbidden_set.reset(); m_forbidden.reset(); m_deps.reset(); } bool macro_manager::insert(func_decl * f, quantifier * m, proof * pr) { TRACE("macro_insert", tout << "trying to create macro: " << f->get_name() << "\n" << mk_pp(m, m_manager) << "\n";); // if we already have a macro for f then return false; if (m_decls.contains(f)) { TRACE("macro_insert", tout << "we already have a macro for: " << f->get_name() << "\n";); return false; } app * head; expr * definition; get_head_def(m, f, head, definition); func_decl_set * s = m_deps.mk_func_decl_set(); m_deps.collect_func_decls(definition, s); if (!m_deps.insert(f, s)) { return false; } // add macro m_decl2macro.insert(f, m); m_decls.push_back(f); m_macros.push_back(m); if (m_manager.proofs_enabled()) { m_macro_prs.push_back(pr); m_decl2macro_pr.insert(f, pr); } TRACE("macro_insert", tout << "A macro was successfully created for: " << f->get_name() << "\n";); // Nothing's forbidden anymore; if something's bad, we detected it earlier. // mark_forbidden(m->get_expr()); return true; } namespace macro_manager_ns { struct proc { obj_hashtable & m_forbidden_set; func_decl_ref_vector & m_forbidden; proc(obj_hashtable & s, func_decl_ref_vector & v):m_forbidden_set(s), m_forbidden(v) {} void operator()(var * n) {} void operator()(quantifier * n) {} void operator()(app * n) { func_decl * d = n->get_decl(); if (n->get_num_args() > 0 && n->get_family_id() == null_family_id && !m_forbidden_set.contains(d)) { m_forbidden_set.insert(d); m_forbidden.push_back(d); } } }; }; /** \brief Mark all func_decls used in exprs as forbidden. */ void macro_manager::mark_forbidden(unsigned n, expr * const * exprs) { expr_mark visited; macro_manager_ns::proc p(m_forbidden_set, m_forbidden); for (unsigned i = 0; i < n; i++) for_each_expr(p, visited, exprs[i]); } void macro_manager::get_head_def(quantifier * q, func_decl * d, app * & head, expr * & def) const { app * body = to_app(q->get_expr()); SASSERT(m_manager.is_eq(body) || m_manager.is_iff(body)); expr * lhs = to_app(body)->get_arg(0); expr * rhs = to_app(body)->get_arg(1); SASSERT(is_app_of(lhs, d) || is_app_of(rhs, d)); SASSERT(!is_app_of(lhs, d) || !is_app_of(rhs, d)); if (is_app_of(lhs, d)) { head = to_app(lhs); def = rhs; } else { head = to_app(rhs); def = lhs; } } void macro_manager::display(std::ostream & out) { unsigned sz = m_decls.size(); for (unsigned i = 0; i < sz; i++) { func_decl * f = m_decls.get(i); quantifier * q = 0; m_decl2macro.find(f, q); app * head; expr * def; get_head_def(q, f, head, def); SASSERT(q); out << mk_pp(head, m_manager) << " ->\n" << mk_pp(def, m_manager) << "\n"; } } func_decl * macro_manager::get_macro_interpretation(unsigned i, expr_ref & interp) const { func_decl * f = m_decls.get(i); quantifier * q = m_macros.get(i); app * head; expr * def; get_head_def(q, f, head, def); TRACE("macro_bug", tout << f->get_name() << "\n" << mk_pp(head, m_manager) << "\n" << mk_pp(q, m_manager) << "\n";); m_util.mk_macro_interpretation(head, def, interp); return f; } macro_manager::macro_expander::macro_expander(ast_manager & m, macro_manager & mm, simplifier & s): simplifier(m), m_macro_manager(mm) { // REMARK: theory simplifier should not be used by macro_expander... // is_arith_macro rewrites a quantifer such as: // forall (x Int) (= (+ x (+ (f x) 1)) 2) // into // forall (x Int) (= (f x) (+ 1 (* -1 x))) // The goal is to make simple macro detection detect the arith macro. // The arith simplifier will undo this transformation. // borrow_plugins(s); enable_ac_support(false); } macro_manager::macro_expander::~macro_expander() { // release_plugins(); } void macro_manager::macro_expander::reduce1_quantifier(quantifier * q) { simplifier::reduce1_quantifier(q); // If a macro was expanded in a pattern, we must erase it since it may not be a valid pattern anymore. // The MAM assumes valid patterns, and it crashes if invalid patterns are provided. // For example, it will crash if the pattern does not contain all variables. // // Alternative solution: use pattern_validation to check if the pattern is still valid. // I'm not sure if this is a good solution, since the pattern may be meaningless after the macro expansion. // So, I'm just erasing them. expr * new_q_expr = 0; proof * new_q_pr = 0; get_cached(q, new_q_expr, new_q_pr); if (!is_quantifier(new_q_expr)) return; quantifier * new_q = to_quantifier(new_q_expr); bool erase_patterns = false; if (q->get_num_patterns() != new_q->get_num_patterns() || q->get_num_no_patterns() != new_q->get_num_no_patterns()) { erase_patterns = true; } else { for (unsigned i = 0; !erase_patterns && i < q->get_num_patterns(); i++) { if (q->get_pattern(i) != new_q->get_pattern(i)) erase_patterns = true; } for (unsigned i = 0; !erase_patterns && i < q->get_num_no_patterns(); i++) { if (q->get_no_pattern(i) != new_q->get_no_pattern(i)) erase_patterns = true; } } if (erase_patterns) { ast_manager & m = get_manager(); expr * new_new_q = m.update_quantifier(new_q, 0, 0, 0, 0, new_q->get_expr()); // we can use the same proof since new_new_q and new_q are identical modulo patterns/annotations cache_result(q, new_new_q, new_q_pr); } } bool macro_manager::macro_expander::get_subst(expr * _n, expr_ref & r, proof_ref & p) { if (!is_app(_n)) return false; app * n = to_app(_n); quantifier * q = 0; func_decl * d = n->get_decl(); TRACE("macro_manager_bug", tout << "trying to expand:\n" << mk_pp(n, m_manager) << "\nd:\n" << d->get_name() << "\n";); if (m_macro_manager.m_decl2macro.find(d, q)) { TRACE("macro_manager", tout << "expanding: " << mk_pp(n, m_manager) << "\n";); app * head = 0; expr * def = 0; m_macro_manager.get_head_def(q, d, head, def); unsigned num = n->get_num_args(); SASSERT(head && def); ptr_buffer subst_args; subst_args.resize(num, 0); for (unsigned i = 0; i < num; i++) { var * v = to_var(head->get_arg(i)); SASSERT(v->get_idx() < num); unsigned nidx = num - v->get_idx() - 1; SASSERT(subst_args[nidx] == 0); subst_args[nidx] = n->get_arg(i); } var_subst s(m_manager); s(def, num, subst_args.c_ptr(), r); if (m_manager.proofs_enabled()) { expr_ref instance(m_manager); s(q->get_expr(), num, subst_args.c_ptr(), instance); proof * qi_pr = m_manager.mk_quant_inst(m_manager.mk_or(m_manager.mk_not(q), instance), num, subst_args.c_ptr()); proof * q_pr = 0; m_macro_manager.m_decl2macro_pr.find(d, q_pr); SASSERT(q_pr != 0); proof * prs[2] = { qi_pr, q_pr }; p = m_manager.mk_unit_resolution(2, prs); } else { p = 0; } return true; } return false; } void macro_manager::expand_macros(expr * n, proof * pr, expr_ref & r, proof_ref & new_pr) { if (has_macros()) { // Expand macros with "real" proof production support (NO rewrite*) expr_ref old_n(m_manager); proof_ref old_pr(m_manager); old_n = n; old_pr = pr; for (;;) { macro_expander proc(m_manager, *this, m_simplifier); proof_ref n_eq_r_pr(m_manager); TRACE("macro_manager_bug", tout << "expand_macros:\n" << mk_pp(n, m_manager) << "\n";); proc(old_n, r, n_eq_r_pr); new_pr = m_manager.mk_modus_ponens(old_pr, n_eq_r_pr); if (r.get() == old_n.get()) return; old_n = r; old_pr = new_pr; } } else { r = n; new_pr = pr; } }