/*++ Copyright (c) 2006 Microsoft Corporation Module Name: macro_finder.cpp Abstract: Author: Leonardo de Moura (leonardo) 2010-04-05. Revision History: --*/ #include"macro_finder.h" #include"occurs.h" #include"ast_pp.h" #include"ast_ll_pp.h" bool macro_finder::is_macro(expr * n, app * & head, expr * & def) { if (!is_quantifier(n) || !to_quantifier(n)->is_forall()) return false; TRACE("macro_finder", tout << "processing: " << mk_pp(n, m_manager) << "\n";); expr * body = to_quantifier(n)->get_expr(); unsigned num_decls = to_quantifier(n)->get_num_decls(); return m_util.is_simple_macro(body, num_decls, head, def); } /** \brief Detect macros of the form 1- (forall (X) (= (+ (f X) (R X)) c)) 2- (forall (X) (<= (+ (f X) (R X)) c)) 3- (forall (X) (>= (+ (f X) (R X)) c)) The second and third cases are first converted into (forall (X) (= (f X) (+ c (* -1 (R x)) (k X)))) and (forall (X) (<= (k X) 0)) when case 2 (forall (X) (>= (k X) 0)) when case 3 For case 2 & 3, the new quantifiers are stored in new_exprs and new_prs. */ bool macro_finder::is_arith_macro(expr * n, proof * pr, expr_ref_vector & new_exprs, proof_ref_vector & new_prs) { if (!is_quantifier(n) || !to_quantifier(n)->is_forall()) return false; arith_simplifier_plugin * as = get_arith_simp(); arith_util & autil = as->get_arith_util(); expr * body = to_quantifier(n)->get_expr(); unsigned num_decls = to_quantifier(n)->get_num_decls(); if (!autil.is_le(body) && !autil.is_ge(body) && !m_manager.is_eq(body)) return false; if (!as->is_add(to_app(body)->get_arg(0))) return false; app_ref head(m_manager); expr_ref def(m_manager); bool inv = false; if (!m_util.is_arith_macro(body, num_decls, head, def, inv)) return false; app_ref new_body(m_manager); if (!inv || m_manager.is_eq(body)) new_body = m_manager.mk_app(to_app(body)->get_decl(), head, def); else if (as->is_le(body)) new_body = autil.mk_ge(head, def); else new_body = autil.mk_le(head, def); quantifier_ref new_q(m_manager); new_q = m_manager.update_quantifier(to_quantifier(n), new_body); proof * new_pr = 0; if (m_manager.proofs_enabled()) { proof * rw = m_manager.mk_rewrite(n, new_q); new_pr = m_manager.mk_modus_ponens(pr, rw); } if (m_manager.is_eq(body)) { return m_macro_manager.insert(head->get_decl(), new_q, new_pr); } // is ge or le // TRACE("macro_finder", tout << "is_arith_macro: is_ge or is_le\n";); func_decl * f = head->get_decl(); func_decl * k = m_manager.mk_fresh_func_decl(f->get_name(), symbol::null, f->get_arity(), f->get_domain(), f->get_range()); app * k_app = m_manager.mk_app(k, head->get_num_args(), head->get_args()); expr_ref_buffer new_rhs_args(m_manager); expr_ref new_rhs2(m_manager); as->mk_add(def, k_app, new_rhs2); expr * body1 = m_manager.mk_eq(head, new_rhs2); expr * body2 = m_manager.mk_app(new_body->get_decl(), k_app, as->mk_numeral(rational(0))); quantifier * q1 = m_manager.update_quantifier(new_q, body1); expr * patterns[1] = { m_manager.mk_pattern(k_app) }; quantifier * q2 = m_manager.update_quantifier(new_q, 1, patterns, body2); new_exprs.push_back(q1); new_exprs.push_back(q2); if (m_manager.proofs_enabled()) { // new_pr : new_q // rw : [rewrite] new_q ~ q1 & q2 // mp : [modus_pones new_pr rw] q1 & q2 // pr1 : [and-elim mp] q1 // pr2 : [and-elim mp] q2 app * q1q2 = m_manager.mk_and(q1,q2); proof * rw = m_manager.mk_oeq_rewrite(new_q, q1q2); proof * mp = m_manager.mk_modus_ponens(new_pr, rw); proof * pr1 = m_manager.mk_and_elim(mp, 0); proof * pr2 = m_manager.mk_and_elim(mp, 1); new_prs.push_back(pr1); new_prs.push_back(pr2); } return true; } /** n is of the form: (forall (X) (iff (= (f X) t) def[X])) Convert it into: (forall (X) (= (f X) (ite def[X] t (k X)))) (forall (X) (not (= (k X) t))) where k is a fresh symbol. The new quantifiers and proofs are stored in new_exprs and new_prs */ static void pseudo_predicate_macro2macro(ast_manager & m, app * head, app * t, expr * def, quantifier * q, proof * pr, expr_ref_vector & new_exprs, proof_ref_vector & new_prs) { func_decl * f = head->get_decl(); func_decl * k = m.mk_fresh_func_decl(f->get_name(), symbol::null, f->get_arity(), f->get_domain(), f->get_range()); app * k_app = m.mk_app(k, head->get_num_args(), head->get_args()); app * ite = m.mk_ite(def, t, k_app); app * body_1 = m.mk_eq(head, ite); app * body_2 = m.mk_not(m.mk_eq(k_app, t)); quantifier * q1 = m.update_quantifier(q, body_1); expr * pats[1] = { m.mk_pattern(k_app) }; quantifier * q2 = m.update_quantifier(q, 1, pats, body_2); // erase patterns new_exprs.push_back(q1); new_exprs.push_back(q2); if (m.proofs_enabled()) { // r : [rewrite] q ~ q1 & q2 // pr : q // mp : [modus_pones pr pr1] q1 & q2 // pr1 : [and-elim mp] q1 // pr2 : [and-elim mp] q2 app * q1q2 = m.mk_and(q1,q2); proof * r = m.mk_oeq_rewrite(q, q1q2); proof * mp = m.mk_modus_ponens(pr, r); proof * pr1 = m.mk_and_elim(mp, 0); proof * pr2 = m.mk_and_elim(mp, 1); new_prs.push_back(pr1); new_prs.push_back(pr2); } } macro_finder::macro_finder(ast_manager & m, macro_manager & mm): m_manager(m), m_macro_manager(mm), m_util(mm.get_util()) { } macro_finder::~macro_finder() { } bool macro_finder::expand_macros(unsigned num, expr * const * exprs, proof * const * prs, expr_ref_vector & new_exprs, proof_ref_vector & new_prs) { TRACE("macro_finder", tout << "starting expand_macros:\n"; m_macro_manager.display(tout);); bool found_new_macro = false; for (unsigned i = 0; i < num; i++) { expr * n = exprs[i]; proof * pr = m_manager.proofs_enabled() ? prs[i] : 0; expr_ref new_n(m_manager); proof_ref new_pr(m_manager); m_macro_manager.expand_macros(n, pr, new_n, new_pr); app * head = 0; expr * def = 0; app * t = 0; if (is_macro(new_n, head, def) && m_macro_manager.insert(head->get_decl(), to_quantifier(new_n.get()), new_pr)) { TRACE("macro_finder_found", tout << "found new macro: " << head->get_decl()->get_name() << "\n" << mk_pp(new_n, m_manager) << "\n";); found_new_macro = true; } else if (is_arith_macro(new_n, new_pr, new_exprs, new_prs)) { TRACE("macro_finder_found", tout << "found new arith macro:\n" << mk_pp(new_n, m_manager) << "\n";); found_new_macro = true; } else if (m_util.is_pseudo_predicate_macro(new_n, head, t, def)) { TRACE("macro_finder_found", tout << "found new pseudo macro:\n" << mk_pp(head, m_manager) << "\n" << mk_pp(t, m_manager) << "\n" << mk_pp(def, m_manager) << "\n";); pseudo_predicate_macro2macro(m_manager, head, t, def, to_quantifier(new_n), new_pr, new_exprs, new_prs); found_new_macro = true; } else { new_exprs.push_back(new_n); if (m_manager.proofs_enabled()) new_prs.push_back(new_pr); } } return found_new_macro; } void macro_finder::operator()(unsigned num, expr * const * exprs, proof * const * prs, expr_ref_vector & new_exprs, proof_ref_vector & new_prs) { TRACE("macro_finder", tout << "processing macros...\n";); expr_ref_vector _new_exprs(m_manager); proof_ref_vector _new_prs(m_manager); if (expand_macros(num, exprs, prs, _new_exprs, _new_prs)) { while (true) { expr_ref_vector old_exprs(m_manager); proof_ref_vector old_prs(m_manager); _new_exprs.swap(old_exprs); _new_prs.swap(old_prs); SASSERT(_new_exprs.empty()); SASSERT(_new_prs.empty()); if (!expand_macros(old_exprs.size(), old_exprs.c_ptr(), old_prs.c_ptr(), _new_exprs, _new_prs)) break; } } new_exprs.append(_new_exprs); new_prs.append(_new_prs); }