/*++ Copyright (c) 2012 Microsoft Corporation Module Name: fpa2bv_tactic.cpp Abstract: Tactic that converts floating points to bit-vectors Author: Christoph (cwinter) 2012-02-09 Notes: --*/ #include"tactical.h" #include"rewriter_def.h" #include"cooperate.h" #include"ref_util.h" #include"bv_decl_plugin.h" #include"float_decl_plugin.h" #include"fpa2bv_converter.h" #include"tactical.h" #include"simplify_tactic.h" #include"fpa2bv_tactic.h" struct fpa2bv_rewriter_cfg : public default_rewriter_cfg { ast_manager & m_manager; expr_ref_vector m_out; fpa2bv_converter & m_conv; unsigned long long m_max_memory; unsigned m_max_steps; ast_manager & m() const { return m_manager; } fpa2bv_rewriter_cfg(ast_manager & m, fpa2bv_converter & c, params_ref const & p): m_manager(m), m_out(m), m_conv(c) { updt_params(p); // We need to make sure that the mananger has the BV plugin loaded. symbol s_bv("bv"); if (!m_manager.has_plugin(s_bv)) m_manager.register_plugin(s_bv, alloc(bv_decl_plugin)); } ~fpa2bv_rewriter_cfg() { } void cleanup_buffers() { m_out.finalize(); } void updt_params(params_ref const & p) { m_max_memory = megabytes_to_bytes(p.get_uint(":max-memory", UINT_MAX)); m_max_steps = p.get_uint(":max-steps", UINT_MAX); } bool max_steps_exceeded(unsigned num_steps) const { cooperate("fpa2bv"); if (memory::get_allocation_size() > m_max_memory) throw tactic_exception(TACTIC_MAX_MEMORY_MSG); return num_steps > m_max_steps; } br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) { TRACE("fpa2bv_rw", tout << "APP: " << f->get_name() << std::endl; ); if (num == 0 && f->get_family_id() == null_family_id && m_conv.is_float(f->get_range())) { m_conv.mk_const(f, result); return BR_DONE; } if (num == 0 && f->get_family_id() == null_family_id && m_conv.is_rm_sort(f->get_range())) { m_conv.mk_rm_const(f, result); return BR_DONE; } if (m().is_eq(f)) { SASSERT(num == 2); if (m_conv.is_float(args[0])) { m_conv.mk_eq(args[0], args[1], result); return BR_DONE; } return BR_FAILED; } if (m().is_ite(f)) { SASSERT(num == 3); if (m_conv.is_float(args[1])) { m_conv.mk_ite(args[0], args[1], args[2], result); return BR_DONE; } return BR_FAILED; } if (m_conv.is_float_family(f)) { switch (f->get_decl_kind()) { case OP_RM_NEAREST_TIES_TO_AWAY: case OP_RM_NEAREST_TIES_TO_EVEN: case OP_RM_TOWARD_NEGATIVE: case OP_RM_TOWARD_POSITIVE: case OP_RM_TOWARD_ZERO: m_conv.mk_rounding_mode(f, result); return BR_DONE; case OP_FLOAT_VALUE: m_conv.mk_value(f, num, args, result); return BR_DONE; case OP_FLOAT_PLUS_INF: m_conv.mk_plus_inf(f, result); return BR_DONE; case OP_FLOAT_MINUS_INF: m_conv.mk_minus_inf(f, result); return BR_DONE; case OP_FLOAT_NAN: m_conv.mk_nan(f, result); return BR_DONE; case OP_FLOAT_ADD: m_conv.mk_add(f, num, args, result); return BR_DONE; case OP_FLOAT_SUB: m_conv.mk_sub(f, num, args, result); return BR_DONE; case OP_FLOAT_UMINUS: m_conv.mk_uminus(f, num, args, result); return BR_DONE; case OP_FLOAT_MUL: m_conv.mk_mul(f, num, args, result); return BR_DONE; case OP_FLOAT_DIV: m_conv.mk_div(f, num, args, result); return BR_DONE; case OP_FLOAT_REM: m_conv.mk_remainder(f, num, args, result); return BR_DONE; case OP_FLOAT_ABS: m_conv.mk_abs(f, num, args, result); return BR_DONE; case OP_FLOAT_MIN: m_conv.mk_min(f, num, args, result); return BR_DONE; case OP_FLOAT_MAX: m_conv.mk_max(f, num, args, result); return BR_DONE; case OP_FLOAT_FUSED_MA: m_conv.mk_fusedma(f, num, args, result); return BR_DONE; case OP_FLOAT_SQRT: m_conv.mk_sqrt(f, num, args, result); return BR_DONE; case OP_FLOAT_ROUND_TO_INTEGRAL: m_conv.mk_round_to_integral(f, num, args, result); return BR_DONE; case OP_FLOAT_EQ: m_conv.mk_float_eq(f, num, args, result); return BR_DONE; case OP_FLOAT_LT: m_conv.mk_float_lt(f, num, args, result); return BR_DONE; case OP_FLOAT_GT: m_conv.mk_float_gt(f, num, args, result); return BR_DONE; case OP_FLOAT_LE: m_conv.mk_float_le(f, num, args, result); return BR_DONE; case OP_FLOAT_GE: m_conv.mk_float_ge(f, num, args, result); return BR_DONE; case OP_FLOAT_IS_ZERO: m_conv.mk_is_zero(f, num, args, result); return BR_DONE; case OP_FLOAT_IS_NZERO: m_conv.mk_is_nzero(f, num, args, result); return BR_DONE; case OP_FLOAT_IS_PZERO: m_conv.mk_is_pzero(f, num, args, result); return BR_DONE; case OP_FLOAT_IS_SIGN_MINUS: m_conv.mk_is_sign_minus(f, num, args, result); return BR_DONE; case OP_TO_FLOAT: m_conv.mk_to_float(f, num, args, result); return BR_DONE; default: TRACE("fpa2bv", tout << "unsupported operator: " << f->get_name() << "\n"; for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m()) << std::endl;); throw tactic_exception("NYI"); } } return BR_FAILED; } bool reduce_quantifier(quantifier * old_q, expr * new_body, expr * const * new_patterns, expr * const * new_no_patterns, expr_ref & result, proof_ref & result_pr) { return false; } bool reduce_var(var * t, expr_ref & result, proof_ref & result_pr) { return false; } }; template class rewriter_tpl; struct fpa2bv_rewriter : public rewriter_tpl { fpa2bv_rewriter_cfg m_cfg; fpa2bv_rewriter(ast_manager & m, fpa2bv_converter & c, params_ref const & p): rewriter_tpl(m, m.proofs_enabled(), m_cfg), m_cfg(m, c, p) { } }; class fpa2bv_tactic : public tactic { struct imp { ast_manager & m; fpa2bv_converter m_conv; fpa2bv_rewriter m_rw; unsigned m_num_steps; bool m_proofs_enabled; bool m_produce_models; bool m_produce_unsat_cores; imp(ast_manager & _m, params_ref const & p): m(_m), m_conv(m), m_rw(m, m_conv, p), m_proofs_enabled(false), m_produce_models(false), m_produce_unsat_cores(false) { } void updt_params(params_ref const & p) { m_rw.cfg().updt_params(p); } void set_cancel(bool f) { m_rw.set_cancel(f); } virtual void operator()(goal_ref const & g, goal_ref_buffer & result, model_converter_ref & mc, proof_converter_ref & pc, expr_dependency_ref & core) { SASSERT(g->is_well_sorted()); fail_if_proof_generation("fpa2bv", g); fail_if_unsat_core_generation("fpa2bv", g); m_proofs_enabled = g->proofs_enabled(); m_produce_models = g->models_enabled(); m_produce_unsat_cores = g->unsat_core_enabled(); mc = 0; pc = 0; core = 0; result.reset(); tactic_report report("fpa2bv", *g); m_rw.reset(); TRACE("fpa2bv", tout << "BEFORE: " << std::endl; g->display(tout);); if (g->inconsistent()) { result.push_back(g.get()); return; } m_num_steps = 0; expr_ref new_curr(m); proof_ref new_pr(m); unsigned size = g->size(); for (unsigned idx = 0; idx < size; idx++) { if (g->inconsistent()) break; expr * curr = g->form(idx); m_rw(curr, new_curr, new_pr); m_num_steps += m_rw.get_num_steps(); if (m_proofs_enabled) { proof * pr = g->pr(idx); new_pr = m.mk_modus_ponens(pr, new_pr); } g->update(idx, new_curr, new_pr, g->dep(idx)); } if (g->models_enabled()) mc = m_conv.mk_model_converter(); g->inc_depth(); result.push_back(g.get()); for (unsigned i = 0; i < m_conv.extra_assertions.size(); i++) result.back()->assert_expr(m_conv.extra_assertions[i].get()); SASSERT(g->is_well_sorted()); TRACE("fpa2bv", tout << "AFTER: " << std::endl; g->display(tout); if (mc) mc->display(tout); tout << std::endl; ); } }; imp * m_imp; params_ref m_params; public: fpa2bv_tactic(ast_manager & m, params_ref const & p): m_params(p) { m_imp = alloc(imp, m, p); } virtual tactic * translate(ast_manager & m) { return alloc(fpa2bv_tactic, m, m_params); } virtual ~fpa2bv_tactic() { dealloc(m_imp); } virtual void updt_params(params_ref const & p) { m_params = p; m_imp->updt_params(p); } virtual void collect_param_descrs(param_descrs & r) { } virtual void operator()(goal_ref const & in, goal_ref_buffer & result, model_converter_ref & mc, proof_converter_ref & pc, expr_dependency_ref & core) { (*m_imp)(in, result, mc, pc, core); } virtual void cleanup() { ast_manager & m = m_imp->m; imp * d = m_imp; #pragma omp critical (tactic_cancel) { d = m_imp; } dealloc(d); d = alloc(imp, m, m_params); #pragma omp critical (tactic_cancel) { m_imp = d; } } protected: virtual void set_cancel(bool f) { if (m_imp) m_imp->set_cancel(f); } }; tactic * mk_fpa2bv_tactic(ast_manager & m, params_ref const & p) { return clean(alloc(fpa2bv_tactic, m, p)); }