/*++ Copyright (c) 2006 Microsoft Corporation Module Name: arith_decl_plugin.h Abstract: Author: Leonardo de Moura (leonardo) 2008-01-09 Revision History: --*/ #ifndef ARITH_DECL_PLUGIN_H_ #define ARITH_DECL_PLUGIN_H_ #include "ast/ast.h" class sexpr; namespace algebraic_numbers { class anum; class manager; }; enum arith_sort_kind { REAL_SORT, INT_SORT }; enum arith_op_kind { OP_NUM, // rational & integers OP_IRRATIONAL_ALGEBRAIC_NUM, // irrationals that are roots of polynomials with integer coefficients // OP_LE, OP_GE, OP_LT, OP_GT, OP_ADD, OP_SUB, OP_UMINUS, OP_MUL, OP_DIV, OP_IDIV, OP_REM, OP_MOD, OP_TO_REAL, OP_TO_INT, OP_IS_INT, OP_ABS, OP_POWER, // hyperbolic and trigonometric functions OP_SIN, OP_COS, OP_TAN, OP_ASIN, OP_ACOS, OP_ATAN, OP_SINH, OP_COSH, OP_TANH, OP_ASINH, OP_ACOSH, OP_ATANH, // constants OP_PI, OP_E, // under-specified symbols OP_NEG_ROOT, // x^n when n is even and x is negative OP_U_ASIN, // asin(x) for x < -1 or x > 1 OP_U_ACOS, // acos(x) for x < -1 or x > 1 LAST_ARITH_OP }; class arith_util; class arith_decl_plugin : public decl_plugin { protected: struct algebraic_numbers_wrapper; algebraic_numbers_wrapper * m_aw; symbol m_intv_sym; symbol m_realv_sym; symbol m_rootv_sym; sort * m_real_decl; sort * m_int_decl; func_decl * m_r_le_decl; func_decl * m_r_ge_decl; func_decl * m_r_lt_decl; func_decl * m_r_gt_decl; func_decl * m_r_add_decl; func_decl * m_r_sub_decl; func_decl * m_r_uminus_decl; func_decl * m_r_mul_decl; func_decl * m_r_div_decl; func_decl * m_i_le_decl; func_decl * m_i_ge_decl; func_decl * m_i_lt_decl; func_decl * m_i_gt_decl; func_decl * m_i_add_decl; func_decl * m_i_sub_decl; func_decl * m_i_uminus_decl; func_decl * m_i_mul_decl; func_decl * m_i_div_decl; func_decl * m_i_mod_decl; func_decl * m_i_rem_decl; func_decl * m_to_real_decl; func_decl * m_to_int_decl; func_decl * m_is_int_decl; func_decl * m_r_power_decl; func_decl * m_i_power_decl; func_decl * m_r_abs_decl; func_decl * m_i_abs_decl; func_decl * m_sin_decl; func_decl * m_cos_decl; func_decl * m_tan_decl; func_decl * m_asin_decl; func_decl * m_acos_decl; func_decl * m_atan_decl; func_decl * m_sinh_decl; func_decl * m_cosh_decl; func_decl * m_tanh_decl; func_decl * m_asinh_decl; func_decl * m_acosh_decl; func_decl * m_atanh_decl; app * m_pi; app * m_e; func_decl * m_neg_root_decl; func_decl * m_u_asin_decl; func_decl * m_u_acos_decl; ptr_vector m_small_ints; ptr_vector m_small_reals; bool m_convert_int_numerals_to_real; func_decl * mk_func_decl(decl_kind k, bool is_real); void set_manager(ast_manager * m, family_id id) override; decl_kind fix_kind(decl_kind k, unsigned arity); void check_arity(unsigned arity, unsigned expected_arity); func_decl * mk_num_decl(unsigned num_parameters, parameter const * parameters, unsigned arity); public: arith_decl_plugin(); ~arith_decl_plugin() override; void finalize() override; algebraic_numbers::manager & am() const; algebraic_numbers_wrapper & aw() const; void del(parameter const & p) override; parameter translate(parameter const & p, decl_plugin & target) override; decl_plugin * mk_fresh() override { return alloc(arith_decl_plugin); } sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) override; func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters, unsigned arity, sort * const * domain, sort * range) override; func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters, unsigned num_args, expr * const * args, sort * range) override; bool is_value(app * e) const override; bool is_unique_value(app * e) const override; bool are_equal(app * a, app * b) const override; bool are_distinct(app * a, app * b) const override; void get_op_names(svector & op_names, symbol const & logic) override; void get_sort_names(svector & sort_names, symbol const & logic) override; app * mk_numeral(rational const & n, bool is_int); app * mk_numeral(algebraic_numbers::anum const & val, bool is_int); // Create a (real) numeral that is the i-th root of the polynomial encoded using the given sexpr. app * mk_numeral(sexpr const * p, unsigned i); app * mk_pi() const { return m_pi; } app * mk_e() const { return m_e; } expr * get_some_value(sort * s) override; bool is_considered_uninterpreted(func_decl * f) override { if (f->get_family_id() != get_family_id()) return false; switch (f->get_decl_kind()) { case OP_NEG_ROOT: case OP_U_ASIN: case OP_U_ACOS: return true; default: return false; } return false; } }; /** \brief Procedures for recognizing arithmetic expressions. We don't need access to ast_manager, and operations can be simultaneously executed in different threads. */ class arith_recognizers { protected: family_id m_afid; public: arith_recognizers(family_id id):m_afid(id) {} family_id get_family_id() const { return m_afid; } bool is_arith_expr(expr const * n) const { return is_app(n) && to_app(n)->get_family_id() == m_afid; } bool is_irrational_algebraic_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_IRRATIONAL_ALGEBRAIC_NUM); } bool is_numeral(expr const * n, rational & val, bool & is_int) const; bool is_numeral(expr const * n, rational & val) const { bool is_int; return is_numeral(n, val, is_int); } bool is_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_NUM); } bool is_zero(expr const * n) const { rational val; return is_numeral(n, val) && val.is_zero(); } bool is_minus_one(expr * n) const { rational tmp; return is_numeral(n, tmp) && tmp.is_minus_one(); } // return true if \c n is a term of the form (* -1 r) bool is_times_minus_one(expr * n, expr * & r) const { if (is_mul(n) && to_app(n)->get_num_args() == 2 && is_minus_one(to_app(n)->get_arg(0))) { r = to_app(n)->get_arg(1); return true; } return false; } bool is_le(expr const * n) const { return is_app_of(n, m_afid, OP_LE); } bool is_ge(expr const * n) const { return is_app_of(n, m_afid, OP_GE); } bool is_lt(expr const * n) const { return is_app_of(n, m_afid, OP_LT); } bool is_gt(expr const * n) const { return is_app_of(n, m_afid, OP_GT); } bool is_le(func_decl const * n) const { return is_decl_of(n, m_afid, OP_LE); } bool is_ge(func_decl const * n) const { return is_decl_of(n, m_afid, OP_GE); } bool is_lt(func_decl const * n) const { return is_decl_of(n, m_afid, OP_LT); } bool is_gt(func_decl const * n) const { return is_decl_of(n, m_afid, OP_GT); } bool is_add(expr const * n) const { return is_app_of(n, m_afid, OP_ADD); } bool is_sub(expr const * n) const { return is_app_of(n, m_afid, OP_SUB); } bool is_uminus(expr const * n) const { return is_app_of(n, m_afid, OP_UMINUS); } bool is_mul(expr const * n) const { return is_app_of(n, m_afid, OP_MUL); } bool is_div(expr const * n) const { return is_app_of(n, m_afid, OP_DIV); } //bool is_div0(expr const * n) const { return is_app_of(n, m_afid, OP_DIV_0); } bool is_idiv(expr const * n) const { return is_app_of(n, m_afid, OP_IDIV); } //bool is_idiv0(expr const * n) const { return is_app_of(n, m_afid, OP_IDIV_0); } bool is_mod(expr const * n) const { return is_app_of(n, m_afid, OP_MOD); } bool is_rem(expr const * n) const { return is_app_of(n, m_afid, OP_REM); } bool is_to_real(expr const * n) const { return is_app_of(n, m_afid, OP_TO_REAL); } bool is_to_int(expr const * n) const { return is_app_of(n, m_afid, OP_TO_INT); } bool is_is_int(expr const * n) const { return is_app_of(n, m_afid, OP_IS_INT); } bool is_power(expr const * n) const { return is_app_of(n, m_afid, OP_POWER); } bool is_int(sort const * s) const { return is_sort_of(s, m_afid, INT_SORT); } bool is_int(expr const * n) const { return is_int(get_sort(n)); } bool is_real(sort const * s) const { return is_sort_of(s, m_afid, REAL_SORT); } bool is_real(expr const * n) const { return is_real(get_sort(n)); } bool is_int_real(sort const * s) const { return s->get_family_id() == m_afid; } bool is_int_real(expr const * n) const { return is_int_real(get_sort(n)); } bool is_sin(expr const* n) const { return is_app_of(n, m_afid, OP_SIN); } bool is_cos(expr const* n) const { return is_app_of(n, m_afid, OP_COS); } bool is_tan(expr const* n) const { return is_app_of(n, m_afid, OP_TAN); } bool is_asin(expr const* n) const { return is_app_of(n, m_afid, OP_ASIN); } bool is_acos(expr const* n) const { return is_app_of(n, m_afid, OP_ACOS); } bool is_atan(expr const* n) const { return is_app_of(n, m_afid, OP_ATAN); } bool is_asinh(expr const* n) const { return is_app_of(n, m_afid, OP_ASINH); } bool is_acosh(expr const* n) const { return is_app_of(n, m_afid, OP_ACOSH); } bool is_atanh(expr const* n) const { return is_app_of(n, m_afid, OP_ATANH); } bool is_pi(expr * arg) { return is_app_of(arg, m_afid, OP_PI); } bool is_e(expr * arg) { return is_app_of(arg, m_afid, OP_E); } MATCH_UNARY(is_uminus); MATCH_UNARY(is_to_real); MATCH_UNARY(is_to_int); MATCH_UNARY(is_is_int); MATCH_BINARY(is_sub); MATCH_BINARY(is_add); MATCH_BINARY(is_mul); MATCH_BINARY(is_le); MATCH_BINARY(is_ge); MATCH_BINARY(is_lt); MATCH_BINARY(is_gt); MATCH_BINARY(is_mod); MATCH_BINARY(is_rem); MATCH_BINARY(is_div); MATCH_BINARY(is_idiv); MATCH_BINARY(is_power); MATCH_UNARY(is_sin); MATCH_UNARY(is_asin); MATCH_UNARY(is_asinh); MATCH_UNARY(is_cos); MATCH_UNARY(is_acos); MATCH_UNARY(is_acosh); MATCH_UNARY(is_tan); MATCH_UNARY(is_atan); MATCH_UNARY(is_atanh); }; class arith_util : public arith_recognizers { ast_manager & m_manager; arith_decl_plugin * m_plugin; void init_plugin(); arith_decl_plugin & plugin() const { if (!m_plugin) const_cast(this)->init_plugin(); SASSERT(m_plugin != 0); return *m_plugin; } public: arith_util(ast_manager & m); ast_manager & get_manager() const { return m_manager; } algebraic_numbers::manager & am() { return plugin().am(); } bool is_irrational_algebraic_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_IRRATIONAL_ALGEBRAIC_NUM); } bool is_irrational_algebraic_numeral(expr const * n, algebraic_numbers::anum & val); algebraic_numbers::anum const & to_irrational_algebraic_numeral(expr const * n); sort * mk_int() { return m_manager.mk_sort(m_afid, INT_SORT); } sort * mk_real() { return m_manager.mk_sort(m_afid, REAL_SORT); } app * mk_numeral(rational const & val, bool is_int) const { return plugin().mk_numeral(val, is_int); } app * mk_numeral(rational const & val, sort const * s) const { SASSERT(is_int(s) || is_real(s)); return mk_numeral(val, is_int(s)); } app * mk_numeral(algebraic_numbers::anum const & val, bool is_int) { return plugin().mk_numeral(val, is_int); } app * mk_numeral(sexpr const * p, unsigned i) { return plugin().mk_numeral(p, i); } app * mk_int(int i) { return mk_numeral(rational(i), true); } app * mk_real(int i) { return mk_numeral(rational(i), false); } app * mk_real(rational const& r) { return mk_numeral(r, false); } app * mk_le(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LE, arg1, arg2); } app * mk_ge(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_GE, arg1, arg2); } app * mk_lt(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LT, arg1, arg2); } app * mk_gt(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_GT, arg1, arg2); } app * mk_add(unsigned num_args, expr * const * args) const { return num_args == 1 && is_app(args[0]) ? to_app(args[0]) : m_manager.mk_app(m_afid, OP_ADD, num_args, args); } app * mk_add(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_ADD, arg1, arg2); } app * mk_add(expr * arg1, expr * arg2, expr* arg3) const { return m_manager.mk_app(m_afid, OP_ADD, arg1, arg2, arg3); } app * mk_sub(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_SUB, arg1, arg2); } app * mk_sub(unsigned num_args, expr * const * args) const { return m_manager.mk_app(m_afid, OP_SUB, num_args, args); } app * mk_mul(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_MUL, arg1, arg2); } app * mk_mul(expr * arg1, expr * arg2, expr* arg3) const { return m_manager.mk_app(m_afid, OP_MUL, arg1, arg2, arg3); } app * mk_mul(unsigned num_args, expr * const * args) const { return num_args == 1 && is_app(args[0]) ? to_app(args[0]) : m_manager.mk_app(m_afid, OP_MUL, num_args, args); } app * mk_uminus(expr * arg) const { return m_manager.mk_app(m_afid, OP_UMINUS, arg); } app * mk_div(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_DIV, arg1, arg2); } app * mk_idiv(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_IDIV, arg1, arg2); } app * mk_rem(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_REM, arg1, arg2); } app * mk_mod(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_MOD, arg1, arg2); } app * mk_to_real(expr * arg1) { return m_manager.mk_app(m_afid, OP_TO_REAL, arg1); } app * mk_to_int(expr * arg1) { return m_manager.mk_app(m_afid, OP_TO_INT, arg1); } app * mk_is_int(expr * arg1) { return m_manager.mk_app(m_afid, OP_IS_INT, arg1); } app * mk_power(expr* arg1, expr* arg2) { return m_manager.mk_app(m_afid, OP_POWER, arg1, arg2); } app * mk_sin(expr * arg) { return m_manager.mk_app(m_afid, OP_SIN, arg); } app * mk_cos(expr * arg) { return m_manager.mk_app(m_afid, OP_COS, arg); } app * mk_tan(expr * arg) { return m_manager.mk_app(m_afid, OP_TAN, arg); } app * mk_asin(expr * arg) { return m_manager.mk_app(m_afid, OP_ASIN, arg); } app * mk_acos(expr * arg) { return m_manager.mk_app(m_afid, OP_ACOS, arg); } app * mk_atan(expr * arg) { return m_manager.mk_app(m_afid, OP_ATAN, arg); } app * mk_sinh(expr * arg) { return m_manager.mk_app(m_afid, OP_SINH, arg); } app * mk_cosh(expr * arg) { return m_manager.mk_app(m_afid, OP_COSH, arg); } app * mk_tanh(expr * arg) { return m_manager.mk_app(m_afid, OP_TANH, arg); } app * mk_asinh(expr * arg) { return m_manager.mk_app(m_afid, OP_ASINH, arg); } app * mk_acosh(expr * arg) { return m_manager.mk_app(m_afid, OP_ACOSH, arg); } app * mk_atanh(expr * arg) { return m_manager.mk_app(m_afid, OP_ATANH, arg); } app * mk_pi() { return plugin().mk_pi(); } app * mk_e() { return plugin().mk_e(); } app * mk_neg_root(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_NEG_ROOT, arg1, arg2); } app * mk_u_asin(expr * arg) { return m_manager.mk_app(m_afid, OP_U_ASIN, arg); } app * mk_u_acos(expr * arg) { return m_manager.mk_app(m_afid, OP_U_ACOS, arg); } /** \brief Return the equality (= lhs rhs), but it makes sure that if one of the arguments is a numeral, then it will be in the right-hand-side; if none of them are numerals, then the left-hand-side has a smaller id than the right hand side. */ app * mk_eq(expr * lhs, expr * rhs) { if (is_numeral(lhs) || (!is_numeral(rhs) && lhs->get_id() > rhs->get_id())) std::swap(lhs, rhs); if (lhs == rhs) return m_manager.mk_true(); if (is_numeral(lhs) && is_numeral(rhs)) { SASSERT(lhs != rhs); return m_manager.mk_false(); } return m_manager.mk_eq(lhs, rhs); } expr_ref mk_mul_simplify(expr_ref_vector const& args); expr_ref mk_mul_simplify(unsigned sz, expr* const* args); expr_ref mk_add_simplify(expr_ref_vector const& args); expr_ref mk_add_simplify(unsigned sz, expr* const* args); }; inline app_ref mk_numeral(rational const& r, app_ref const& x) { arith_util a(x.get_manager()); return app_ref(a.mk_numeral(r, r.is_int() && a.is_int(x)), x.get_manager()); } inline app_ref operator+(app_ref const& x, app_ref const& y) { arith_util a(x.get_manager()); return app_ref(a.mk_add(x, y), x.get_manager()); } inline app_ref operator+(app_ref const& x, rational const& y) { return x + mk_numeral(y, x); } inline app_ref operator+(app_ref const& x, int y) { return x + rational(y); } inline app_ref operator+(rational const& x, app_ref const& y) { return mk_numeral(x, y) + y; } inline app_ref operator+(int x, app_ref const& y) { return rational(x) + y; } inline app_ref operator-(app_ref const& x, app_ref const& y) { arith_util a(x.get_manager()); return app_ref(a.mk_sub(x, y), x.get_manager()); } inline app_ref operator-(app_ref const& x, rational const& y) { return x - mk_numeral(y, x); } inline app_ref operator-(app_ref const& x, int y) { return x - rational(y); } inline app_ref operator-(rational const& x, app_ref const& y) { return mk_numeral(x, y) - y; } inline app_ref operator-(int x, app_ref const& y) { return rational(x) - y; } inline app_ref operator*(app_ref const& x, app_ref const& y) { arith_util a(x.get_manager()); return app_ref(a.mk_mul(x, y), x.get_manager()); } inline app_ref operator*(app_ref const& x, rational const& y) { return x * mk_numeral(y, x); } inline app_ref operator*(rational const& x, app_ref const& y) { return mk_numeral(x, y) * y; } inline app_ref operator*(app_ref const& x, int y) { return x * rational(y); } inline app_ref operator*(int x, app_ref const& y) { return rational(x) * y; } inline app_ref operator<=(app_ref const& x, app_ref const& y) { arith_util a(x.get_manager()); return app_ref(a.mk_le(x, y), x.get_manager()); } inline app_ref operator<=(app_ref const& x, rational const& y) { return x <= mk_numeral(y, x); } inline app_ref operator<=(app_ref const& x, int y) { return x <= rational(y); } inline app_ref operator>=(app_ref const& x, app_ref const& y) { arith_util a(x.get_manager()); return app_ref(a.mk_ge(x, y), x.get_manager()); } inline app_ref operator<(app_ref const& x, app_ref const& y) { arith_util a(x.get_manager()); return app_ref(a.mk_lt(x, y), x.get_manager()); } inline app_ref operator>(app_ref const& x, app_ref const& y) { arith_util a(x.get_manager()); return app_ref(a.mk_gt(x, y), x.get_manager()); } #endif /* ARITH_DECL_PLUGIN_H_ */